Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
10 July 2009, document version 0.9 — covers Firebird 2.1-2.1.2

Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

10 July 2009, document version 0.9 — covers Firebird 2.1-2.1.2
Paul Vinkenoog et a.

Table of Contents

R 011 0T [F o1 o o I PP SPTP 1
T o = A 1 7= (= PRSP 1
VEISIONS COVEIEAeiieiiiiiie ittt e ettt e sttt e ettt e e e skt e e e ekttt e e s b bt e e e st et e e s aabte e e e e anba e e e e e nbbeeesanbreeeeans 1
U 11 g0 £ g T o PSSR 2
(0011010 1=: (= 155U 2
MISCEIANEOUS NOLES ... eeeiieiiieite ettt e ettt e et e e e ettt e e e e bt e e e abe e e e s e tba e e e e snbbe e e e enbneeeens 2

Deprecated is not (always) depreCatedoiivei oo 2
2. Reserved WOords and KEYWOITSuviiiieiiiiiiiiiee et e e e e e e e e e e s e et eeeaee e s s snnbeaneeaaeeenaas 3
Added SINCE INTEIBASE B ...ttt e et e e e bt e e e s snreeeeens 3
NEWIY FESEIVE WOITS ...t e et e e e e s e e e e e e e e s s et re e e e e e e e e s s nnnreanreaaeens 3
NEW KEYWOITS ...coiiieieiieeee ettt e e e e e s et e e e e e e e s se ettt a e e e eaeeeessnansrbaeeeaaeeeaanes 4
Dropped SINCE INETBASE 6eeeiiieeiiiiiiiiee e e e st e e e e s e s e e e e e s s s et e e e e e e e e sesanataaeeeeeeeesannnnnens 5
N[O R Lol aTe o g === Y=o U PRPRR 5
NO [ONGEN KEYWOITS ...t e e e e e e e s e e e e e e e e s s e ntrareeeeas 6
Possibly reserved in fULUME VEISIONSccuviiiiiie ettt e e e st e e e e e e s e et taaeeeaaeeeean 6

3. Miscellaneous [anguage ElEMENEScuiiiiee e e e e e e e e e e e s e et eeea e e e s senarrraeeeaaens 7
== (SINGIE-TINE COMMENL) ... e e e e e e e e e e e e e s e et b e e e e aeeessssntabnraeaaeesaanes 7
SNOMNBNG CBSES ..ttt e e e bbbt e e e ettt e e e sabe e e e e ananeeas 7
CASE CONSIIUCT ...ttt e e ettt ettt e e e e oo bbbttt e e e e e s e bbb be et e e e e e e s aaabbbbbe e e e e e e e sannbbbneeeeaeeeaanns 8

S 0] 0 Lo 7 SRR 8
SEAICNEA CASE ...uiitititiietititetetettrerererererer aeaereaese eae s e aeseseseseesassssesssesesssesssasebesesssesssesssenesesnnnnnns 9

4, Data types aNA SUDLYPESeviiiiieeie e e ee ettt e e e e et e e e e e e e s e st e e e e e e e e s s atbeeeeeaaeeessaantbaeeeeeeeeaannnees 10
BIGINT QBEA LY +rreeeeieeeiiiitiite et e e e e e e ettt e e e e e e e et e e e e e e e s st et e e e eeeesesaasabaeeeaaeeesssasnraaneeeaaeesannnes 10
@] R0 = T 1Y L= PSSR SPP 10

Text BLOB compatibility With VARCHARuuiiiiiiieei ittt e e e e 10
VA OUS ENNANCEIMENTSeeiiiiiiiiie ettt e e e s et e e s b b e e e e bt e e e e s snbbe e e e s nnnneeas 10
NEW ChEFBCIEN SELSeeiiiiiiie ittt et e e e s et e e e s bbbt e e e enbbe e e e e nnbeeeeeane 11
Character set NONE handling Changedoeviiiiiiiiiiiiiiice e e e e e e e 13
INEW COHBLIONS ...ttt ettt e ettt e e e bbbt e e e ea bttt e e s sbb e e e e e nb et e e e enbte e e e s annneee s 13
Unicode collations for all CharaCter SatSoooiuiiiiiiiiiie e 15

5. DL SEBLEIMIENLSieietieeeeee e e ettt e e e e e e sttt e e e e s s e ae bbb e et e e e e e e e aaa b b be e et e e e e e e s s snbbbe e e e e e e e e e ananbbeneeeaaeeas 16

L0 N N 1\ PP P TP RPRPRPR 16
CREATE COLLATION ittt ettt ettt st e s st s e st st st s e s e e e s e s e e e e enneans 16
DROP COLLATION ittt ettt et st st et s e et st e e st et s s e st e e e e e e ens 18

L0 1Y 1Y Y PP 18

DA T A B A SE ..ottt eas 19
CREATE DA T ABASE ..ottt e et e et e et et et et ea et enaanennns 19
ALTER DA T AB A SE ...t e et et e et et et et e e et e e e enns 20

DOM AN ettt e e e e e et e e i aaanns 22
CREATE DOM AN ittt e e et e et et e e e e e e e e et e e et eaeseaannannns 22
ALTER DOMAIN .ttt et et et et et e et e et s e et s e et e e st s e e e e e e e s e aenns 22

E X CEPT ION ettt e e et et e et et et e e et e e et e e et e e et e e e e e e e n et e e e e e e aneens 23
CREATE EXCEPTION ittt e et e e et e et e e et e e s e e e e e e e e e s e aeeenannns 23
CREATE OR ALTER EXCEPTION ..uiiiiiiiiiii ettt ettt et e et s e e s e e e e e ee e aenns 23
RECREATE EXCEPTION L.oiiiiiiiiiiiiiiie e st e et e et s e e e et e et et et et e et ea e e s ennasnenaenenannees 23

EXTERNAL FUNGCTION .ttt ettt e st e e e et e et s et s e e e e e e e e e e e e aeeenaen 24
DECLARE EXTERNAL FUNCTION ...ttt e et s e e et e et a e e ee s s seesnaenasnannns 24
ALTER EXTERNAL FUNCTION .ottt ettt e e s et s e s e e e e e s e s ena e s e en 25

Firebird 2.1 Language Ref. Update

1 I PPN 25
DECLARE FILTER oiitiiiii ittt e e e et e et e et e e e e et e e n et e e et e e e s e e enenenns 25
D PPN 26
CREATE INDEX ittt et et e e e e e e e e et s e et s et s e a e e e e e s enaenns 26
Privileges: GRANT @Nd REVOKEcccociuiiiiiiee e e e e e ettt ie e e e e e e s s sttt ae e e e e e e e e s esaabaaaesaaeesssannntbnneeesaeeesanns 28
REVOKE ADMIN OPTION L.euitiitiitiit sttt et st e s e e e e e s e e s e e s s e s e e e e e e eens 28
PROCEDURE ...ttt et e et e et e e e et et e e e e e e e e et e e e et e 29
CREATE PROCEDURE ...ttt sttt e s et s s e s e e e e e e e e e e e n e ennenns 29
ALTER PROCEDURE ..ottt e e e et et e e e e e e e e e e e et e e e aannns 31
CREATE OR ALTER PROCEDUREcuiitiiiiiiiieieee ettt e e e e e e s eas e e e s ens e s ensennenns 32
DROP PROCEDURE ...ttt e et e e e et et et et e s e e e e et e s e e s ea et eaaaneeaenenenns 32
RECREATE PROCEDURE ...ttt ettt et e s e s e s e e e e e e e e e e e e eaaen 32
SEQUENCE OF GENERATOR ..ouitiiiiiieit ettt et e et et e et e e e e e e e et e e et e e e e e e s e aeeanaenns 33
CREATE SEQUENCE ...ttt et e e et e e e e et e e e e e e e e e e s e s e e e e ene e ens 33
CREATE GENERATOR ..ttt ettt et s et s e e s e e s e e s st s e e e e e e e e anaen 34
ALTER SEQUENCE ...ttt e et e e et e et et e e e et e e e e e e e e e e anannns 34

SET GENERATOR ..ttt e et e et et et e et e et e e e e e e et e e e e e e e e e e s e annsenen 35
DROP SEQUENCE ...ttt ettt ettt e s e e st e e st et s e et st e e s e s e n e e e e e e e ens 35
DROP GENERATOR ettt ettt et et et st et s et s e e e e et e e e e e e e e s e aeasenanans 35

B I = PP PP P UPTPPPT 36
CREATE TABLE ..ot e e e e e e e e e e s et e e e e e ea e et en e et eaaenaennenennas 36
ALTER TABLE oottt e e e et e e e et e et e et e e e et e e r e nans 40
RECREATE TABLE ...t ettt et st et e e e s e e e e e e e eas 43
TRIGGER ..ceei it e e et ettt e e 43
CREATE TRIGGER ...ttt ettt et et e e et e et e e e e s e e s e e s e e e e e e e senaenns 43
ALTER TRIGGER ... et e e e e e e e e et e e et e e e aeeenaen 47
CREATE OR ALTER TRIGGER ...ttt e et e et e et e e e e e e e eenenennas 49
DROP TRIGGER ...eiiiiiie ettt et e e e et e e e s e e e e e s e s e e e e e e e ens 49
RECREATE TRIGGER ...ttt e et e e e et e e et e e et e e a et e e e s e e et e e e s ennennaen 50

A L PP PRPRPRP 50
CREATE VIEW ettt ettt e et e et e e s et e e e e et e s e e e e s e tnea s et eaa et ea e et eane s ennennennns 50
RECREATE VIEW ottt ettt et et et e st e e st s e e s e st e e e e e e eas 52

6. DIMIL SLALEMIEINES ... 54
[o I PSP PP TP 54
ORDER BY ittt 54
I N PP P PP UPRPPRPRPPRPRN 55
RETURNING .ottt ettt e et e e e e s e te e e s et e e s et e e s et e a s et ea et en s et en et eaannenennaen 55

O 1T T PP PRUPRUPRPPRPRR 55
EXECUTE BLOCK ..ttt et e e et e e e e e et e et e e et e e et e e et e e et e e e s e e et e e et aa e s aaeaannenns 56
COLLATE in variable and parameter declarationscccoiviiiiiiiiieee e 58
Domains inStead Of atalYPESvvvviiiiiee i e e e e st e e e e e s e e eneees 58
EXECUTE PROCEDURE ...ttt ettt e et e et e et e e et e e e e e e e e e e e e e e e e e e aesanannns 59
L St PSP UPTPPPRPS 60
INSERT ... DEFAULT VALUES ...ttt et e e e e e e e e et e e e ennas 60
RETURNING ClAUSE ... 61
UNION alowed in feeding SELECTccuviiiiieeeiiiiiiiieiee e e e e s ssrtree e e e e e e e e s sniare e e e e e e e s snnnneraeeeaeens 61
MERGE ... e e 62
Sl I O PPN 63
Aggregate functions: Extended funCtionalityccccooiiiiiiiiiie e 63
COLLATE subclause for text BLOB COIUMNScuuiiieiiiiiieeeiiiiee e 65
Common Table EXpressions (“WITH ... AS ... SELECT”) .uuuuuiiiieeeeiiiiiiiiieeeeee e eesiivnreeeee e e e ennes 65
Derived tables (“SELECT FROM SELECT”) ...iicciuiieiiieeeeieiiiiieeeeeee e e s seintneeseeeeesssnnsssnneeaaaeesanns 68

Firebird 2.1 Language Ref. Update

FIRST @GN0 SKIP ..uiuiuitiuiiiiiiiitaiiataeasssssasasasaaaaasaassasasassssassssssssssssssssssssssssssssssssssssnsssnsnsnsnsnsnsns 69
GROUP BY ittt e et e et e e e e et e e 70
HAVING: SHICIEN TUIESuvviiiiie ettt ee ettt e e e et e e e e e e e s s et b e e e e e e e e s s anntreeeeaaeeeaaanns 71

N | PP UP PPN 71
ORDER BY ittt 74
I N PP PP TP PPRPRPPRPRN 76

O 1T T PP PRUPRUPRPPRPRR 77
Table alias MUSt be USE if PIrESENTeeeiie e e e 79

L0] 1 1 PP UPRPPRUPRPPRPRN 79
KA I T 1 PPN 80

L0] N I PP RPRPRPRR 81
ORDER BY ittt aa e 81
I N PP PP TP PPRPRPPRPRN 82
RETURNING .ottt ettt e et e e e e e et e e s et e e s et e a s et ea s et e a et ea s et en et aeannenannaen 82

O 11T T PP PR UPRUPRPPRPRR 82
UPDATE OR INSERT ettt ettt st st st st st s e e e st st e e e e s e e e e e e e e e nenns 83
7. Transaction CONLIOl SIALEMENEScoii it e e e e e e e e e e s e e e e e e e e s s e s nrbee e e e eaeeesannnnrnees 85
RELEASE SAV EPOIN T .ttt e et e e e e et e e e et e e e e e e e e e e e e e e e s e e e e aeneens 85
O I I 2 7 N X PPN 85
ROLLBA CK RET AIN ittt ettt e et e s e e e s e s et s e et e e e e e aeeenaen 85
ROLLBACK TO SAVEPOINT .ttt ettt et r st st s s s s e s e st s e e e e e e enns 86
SN Al © 1 N I L PSP UPTPRUPRPN 86
INtErN@l SAVEPOINLESeiiiiiee e e e e e e e e e e e e e e e e e s st b eraeeeeeeessanantbrneeeeaeeaaanns 87

S V= Lo LRSI o [T | PSRRI 88

SET TRANSACTION .ttt ettt e e et e e e et e e et e e et e e et e e et e e et e e e e aaeeneeeenanneens 88
IGNORE LIMBO ..ottt ettt e et e st et s e e st e e s et st et e e s e e e r e e e e e ens 89
LOCK TIMEOUT ..ottt ettt et st et st e e s e e e et s s e s e e s e e e s e a e e e e e s enaen 89

NO AUTO UNDUO ittt et e et e e e e e et e e et e e e e e e e e e e e e e e e eeeenanneenaen 89

T S I = (1 £ 91
BEGIN ... END blockS May D8 EMPLY ...cccoiiiiiiieiee e a s 91
B RE A K ettt e e e e 91
L@@ 1 ol =0 SR 92
DEC L ARE ...ttt e e e en 92
DECLARE ... CURSDR ...cuituiiitiii ettt et s et e e s et s e st s e e e s e s e e eae e e e e nenns a3
DECLARE [VARIABLE] With iNitialiZationccccoceiiiiiiiiii v aaneaeaees 93
DECLARE with DOMAIN instead Of datatyPeccvveeeeiiiiiiiiiieiie et e 94
COLLATE in variable deClarationcccuveiiiiie it 9

[O = 1 (O) PP TPRUPRPRP 95
Rethrowing a caught EXCEPLIONouviiiiiiii e e et re e e e e e e 95
Providing @ CUSLOM EITOF MESSAGEuuvvreiieeeeeeeeiitiirieeee e e e s sstt e e e e e e e s s s satbreeeeeaeeessannrbaeeeaaeas 95
EXECUTE PROCEDURE ...ttt e et e et e et e e et e e e e e e e e e e e e e e e e e s e aesanannns 96
EXECUTE ST AT EMEN T ottt e et e e e e e e e e e e e e e e s e e e s e e e e e aesenaenns 96
N[0T = = W= (011 0= SRR 96

OnNe row Of data FEIUMEcoeiiiiii i e e e e e e r e e e e s s et rreaeeeeas 97

Any number of data rOWS FELUIMEooiiiiiiiieiee e e e e 97
Caveats With EXECUTE STATEMENT ...ooiiiiiiiiiieeeeeeeeeeeee ettt 98
) PSPPI 98
L O T ol U S SRRPPTRRT 98
FOR EXECUTE STATEMENT ... DO ittt et et e e e e e e et e e e e e eeenaen 99
FOR SELECT ... INTO ... DO ouiiiiiiiiiiit ettt et et s e s e e et e e e e e e e e e e ens 99
AS CURSOR ClAUSE ..eeeiiieee ittt e e e s et e e e e e s e et e e e e e e e e s saattbaeeeaaaeesennnrnees 100

[Y OO OPPPPP 101

Vi

Firebird 2.1 Language Ref. Update

L@ I oL £ o | R 102
PLAN allOWEd iN tHQQEr COUE ...uvviiiiiie ettt e e e e et e e e e e e s s st raneeeaens 102
UDFs callable as vOid fUNCHIONScuuiiiiiiec et a e e e s ae e e e e e e e e e 102
WHERE CURRENT OF valid again fOr VIEW CUISOISuvvieiieeieiiiiiieieee e e s escitiree e e e e e e esannnneeea e 103
LS I 00 01 (= A= = o= PR 104
CURRENT _CONNECTT O ..ettiiiieiitie ettt e et e e e et s e e ettt s e e e e tb s e e eeta s e e eetba s e eeessseeeennasaaees 104
CURRENT _ROLE ...ttt ettt ettt et n e en e e e e, 104
LO10 o TPTTPTPTUTPR 105
CURRENT _TT MESTAMP ..ttt ettt e et e e et e e e et r e e et b e e e et e e e et e e e e eba s 105
CURRENT _TRANSACTT OIN L.ttt ettt e ettt e ettt e e et s e e e e e e e e e e e e e aaa e e e esaa e eeenaaeeeennns 106
CURRENT _USER ..o ittt et e e et e e et n e e e et e e e e et e e e e et as 106
Dl I I PP UPPRTRN 107
L€ D5 0@ B PP 107
I INSERTT NG L.ttt e e ettt e e et et e e e e et e e e e et e e e e et s e e eeta s e e eetaeeeeetnnnanee 108
Y ORI 108
B 1 PSPPSR 108
@ I PO 109
ROW COUNT ...ttt ettt e e et e e et e e e e et e e e e et et e e e e et ee e s e s s eneeseeee e eneeneneeenas 110
SQLOODE ...ttt ettt ettt e et et et et et et et et et et ettt et et ee ettt et et ee et et et et et et et e et e et et en e ee e 110
L0 I I N PP UPPRTR 111
10. Operators and PrediCALEScciiiciiiiie e e e e e eee e e e e e e s s e e e e e e e s sa b e bereeeeeeseaanarrreeeeas 112
NULL literals allowed @S OPErandSccceeiiiiciiiiiiieie et e e e e e e s e e e e e e e s e eanreees 112
[(Ll e glo 1 a7 (o]) IR 112
OVEFIOW CHECKINGvviieiiee e e e e e e e enneees 112

N I PP RP 112
NULL HteralS @llOWEc..eeiiiieiiie et e e s e e e e e e e et reeeeaeas 113
UNION S SUDSEIECL ...uvviiiiiiei ittt e e e e e e e e e e e s e et e e e e e e e e e s seatnbraeeeaaeesaannnes 113

ANY / SOME ..ot 113
NULL HteralS @llOWE ...ttt e e e e e e e e e et eeaeas 113
UNION S SUDSEIECL ...uvviiiiiiei it ee e e e e e e e e e e e e e s e et re e e e e e e e s e s satntbaeeeaaeeseananes 113
RSP PPRRP 113
NULL HteralS @llOWE ...ttt e e e e e e e e e et eeaeas 113
UNION S SUDSEIECLviiiiiiiei it e e e e e e e e e e e e s e et re e e e e e e e e s s eatnrbaeeeaaeesnannnes 114

IS [NOT] DISTINCT FROM ..iuiitiiitiiitiiie ittt st s s et s e e e e e e e et s et s et e eanaea s e e s e e s easeaeean e e aannns 114
NEXT VALUE FOR ..ottt ettt e e et e e e et e et e et e e et e e et e e et e e et e e s e aneenannns 115
S Y PP PRPTPPRR 115
AN o o =0 = (N 0 ot (0] 1T ERPRR 116
[PRSP 116
12, INErNal TUNCLIONSo e e e e s e e et e e e e e e e e s s es bbb aeeeeeeessannntbrneeeaens 117
F = | ISP TPPRPRPRTRI 117
@10 | T PP PRSPPI 117
ASCH_CHAR() ettt ettt et et ee et e et et e et e e et e e st e e et e e aeesaeeeeeeaeeseeeeeeeeeesreeseesaeeseeeeesaeesreeseseaee e 118
ASCH _VAL(ettt ettt et e et e e et e et et e et e et e e e s et e eee e e e saeestesaeeseeeeeeeeeesae e e e ereeseneteeaeeereees 118
ASIN(ettt ettt ettt e ettt et e ettt e et et e et e et e e et et e e —e et e e ete et e et e et e et e et eete e te et e ereeaesreens 119
ATAN(ettt ettt e et et e et e et et e et e et e et e eae e et e e te et e ee e et e eaeeereeeteeateereete et e et e eete e tesreeateeteananaeas 119
ATANZ() oottt ettt e et et et e e et e et e e et e e et e e e et e et e eaeeeae e teereeere et e et e et e ete et e e ete et e ereeneeenee e 120
BIN_AND() v eeetteeeeeeeeeeeeets e e eeeeeee e e seeeeeesaeesaeeeeeeaeeseeeseeeaeesseeeseeaeeseeeseeeaeesaeeereeeeseeeereeteeaeeereees 120
BIN_OR() v teeeueeeeeeeeeeteeeeeeeeeeeeeeeeaeesteeeteeaeesaeeeeeeaeeseeeetesaeeseeeseeeaeeseeeateeeteeaeeeeeeaeesreeeteeaeesaeeeeeeaeeeees 121
BIN_SHL() vt eveeteeeeeeeeeeeeeeee et e et s et e e et e eeeeaeeeteeeesseesaeeseeeseeeeeeaeseeeseeeaeeereeeeeeateeateeeeeaeeereeeteeeeereees 121
BIN_SHR() v eeeetteteeeeeeeeeeeeee et eeete e e seeeseeeeesseesteeaesseesseeeaeeseeeseeeseesseeseeeeesseesreeseeseeeseeesaneaeesneeaneas 121
BIN_XOR() . eveeetteeeeeeeeeeeeeeseee et e eeeesaeeseeeeesteeese e e e eaeeseeeeeeseeeeeesseeeeeseeeseseaeesteesesaeeseeeseesaessreeaeeans 122
BIT LENGTH() .veeveeeeeeeee et eees et e et e eee et eeeeeeeeeee et e s e saeeeeeeeesteeseeseeeseeeseseseesseaaeesanesesssessreesresseeseeas 122

Vii

Firebird 2.1 Language Ref. Update

CAST() et ee et e e ettt e et et et e et ettt e et et ettt e et ettt e et ettt ettt er e, 123
CEIL(), CEILING() +.vvveeeeeeeeeeeeeseeeseeeeseseseeeeeeeeteseeseeeeeesseseeees et eseseseeeeeesen e seeeesen s seeeeeeseneneeeesnes 125
CHAR_LENGTH(), CHARACTER _LENGTH() v.vvveveteeeeeeeseeseeeseseseeeeseseeeeseeseseseeeeesenesseseeseseneneseees 125
COALESCE() .ttt eeeeeeeeeeee e eee et ee et e e et e e et et e et ee et s e e et ee et et e et ee et s e st eees e e et e et s s e e e s 126
COS() ettt et e ettt et e et ettt ettt ettt ettt ettt ettt n e, 126
COSH() vvvteeeeeeeee ettt et e e e et et et e et e e et et e et e e et et e e et et et et e e et et e et etenn et eeen et 127
COT() vttt e et e ettt et e et e et et et e e e et et e et e e et et e e et et et et s e et et ee e s et e e et e e ettt enen e 127
DATEADD() . eeeeeeeeee et e e ee et e et et e e et e e et et ee e et et e e et et et et e e et e e et et ee e et et et ettt en e en e, 128
DATEDIFF() . eeeeeeeeee et e e ettt ee et et e e e et et et e e et et e e et et et et e e et e e et et en e et ee et en e et ee e ennsee e en e, 128
DECODE() v.vvveteteeeeeee et e eee et et et e e et ee et e e et et et es e et eeee et e e et e e et e e e et et et e et e et et ener et ee e n e enan 129
EXP() vt eeeeeee et e e e e et et e et et e et et e et ettt ettt et ettt et et e ettt et ettt et en et 130
EXTRACT() «vveeteeeeeeeeeeees e eeeeee et et e et et et es s e et eees e ee e e et et et e eeee et et s e et ee et es s e e eee et eeeseseeeeseneneneeeees 131

IMILLISECOND «.evevveeeeeeeee ettt ee e e e et e et et e s et et et s e st et et en s e seee et en e et et eeenen e 132

WEEK ettt ettt ee et ee e e e e et et e et e e et ee e e e et e s et e e et e e et e e e et ee et e ettt en e en e 132
FLOOR() e evveeeteteeeeeeeeees et s seeees et s s eeee et et s e eeetesee e e e e et et ee e e s e e e e e et et e e eeee et eneneseseesee s e e eeesenen e 132
GENL_ID() «vveeeeeeeeeeeeeeeee et e e et et e ee et et et et e et et et e et et et e e et et e e en e e et et et e e e ettt en e et et en s eeees 133
GEN_UUID() .ottt e et e et e et e e s e s et e e et e e et et et s e e et e et e s s e eeenen e eeeeen e 133
HASH() vttt ee et e et e e e e et et et e e et et et e e e et ee et s e et et e e ee e e et et et et e e ettt n et er s eeees 134
TIEQ) +vveeeeeee et ee s e ee et e e et et eeee e s e e et et et et et et ettt e et e e et et e e e et et et et et et et et e et et e e et enen e en e 134
LEFT() «vveeeeeeeeeeeeeee e e e et et e s e e e e e et e e e e e et et s e e e et e e et e e e e e et et ee e e et et et e e et etenen e et et eeen e en e, 135
LINQ) evovee et eeeee et e ettt ee e s et et st et e et e et e e et et e et et et n e e et et e e ettt ettt eten e et en e, 135
LOG() veveeeeeeeeeet e e e et et e e eeeeeeee e e e e e et et s e et et et et e e et e et et et e et et ettt et e ettt e ettt eren e 136
LOGILO() v eeeeeeeeeeeeee e eeeeee e e eeeees e eeeee e et et e e et ee et et e e e et et et et e e e et et et et ee et e e et e e et et et en et enneee, 136
LOWER() vevveeeeeeeeeeeee s e e eeee et s e et eeee et e e eeee et e e e e e ee et s e e s et es et e e et et et es e st e e e et en e see et enn e eeee e e 137
LPAD() .ottt et e et et et et e et ettt et et et ettt et et et et et ettt en et et et et en e et erer e eeenes 137
IMAXVALUE() ©.vveveeeeeeeeeeee et eeeeeeeeee s eesees et e eeeees et et seeeeees et s e eeeeeees s e e ee et et s s et eeesenneseeeesenenen. 138
IMINVALUE(.ottt eeeeee et ee s e e ee et e e eeet et et s e et et et s s et et et s s s sees et s e et eeesen e eeeseeseeenseneeeees 138
IMOD() vttt ee et e et e e ee e et e e et e e e e et et et e e et e e et et e et e et et et e et e e et et et e ettt en et enennen 139
NULLIF(Q) vveveeeeeeeeee et et eee et s e eeeees s eeeeeeee e e s et eeeees s ee s et esee e ee et et et en s s et es et en e seeeesen s e eeeeen e 139
OCTET_LENGTH() vevetveeeeeeeeeeeseeeeeeeete s e eeeees et seeeeeesee s s eeee et s s eseeeeees s e seeees s s e et et ereseeeseeeenenenen. 140
OVERLAY () vrvetetete e eee et e e ee et s e et et et e et e et et et et e e et et et e s e e et es et s e e e e eeen e s et et et s e e eeeeenennen. 141
PL0) vttt ettt ettt ettt ettt ettt e et ettt et ettt et e ettt et e et et n et enen s 142
POSITION() v veteeeeeeeeeeeet e s e e et et s e et et et ee e e eees et et e e e e e e s es e s e e e e esee s et eeee et s s e e es et eneseeeeeeseneneneees 142
POWER() vt vveeeeeeeeeeseeeseeeeees et e eeeeeeeses s eeeeees et s eeee et es et en e e ee et et et e eesees et et e e e et et er e eeeeee et enneseseeses 143
RAND() vttt eeeeee et e e e et et et s et et et ee e et et e e et et e et et et et e e et e e et et et e e et et et et et et et n et en e enan 143
RDBSGET_CONTEXT() «.veveteeeeeeeeeeeseseeeseeseseseseeeeeeseseseseeeeseseseseeeeeeseseseseeeeeeses s seseeseeeseseeeseesenennen. 144
RDBSSET_CONTEXT() cvevevvvereeeeeeeeeeeeseseeeeeeseseseseeeseeseseseseeeeeeseseseseeeeseseneseeeeseeeseseseseeseseneseseeeesenan 145
REPLACE() ..vveveteteeeeeeeeeeee e e eeeeetee s s e e s ee st et es et s s e et et et et s e et et et et ee s e st et et ee e s st eeee e e st eeesenneeeeeees 146
REVERSE() .. vvveveeeteeeeeeeeteseeeeeeees et eseseeees et s eeetee et es s et et et et s ee et et et e s st eeetee e se e e et ee s e st eeesenneneeeees 147
RIGHT() vttt eeeeeeeet ettt e e et et e e et et et e e e et et et e e e et et et et e st eeee et e eeeeet et en e e et eeee e eeeeeeereneneeens 147
ROUND() vttt et e et et et e st e et ee et e et et ee et s e s et es et s e et et et s e st e e e et e e seee et en e e eeee e e 148
RPAD() .ttt et et et e ettt et ee et et e et ee et et e e et et et e et et et et e e e et ettt ettt en ettt e et en e, 149
SIGN() oottt ettt e ettt e e et ettt ettt ettt ettt e ettt er et en e 149
SIN() «vevee et eeeee ettt et et e ettt ettt et ettt ettt e e et e ettt ettt en et en e, 150
SINH() ettt ettt e et e e et et et s e et et et et e e e e e et et e e e et et e e et e et ettt e ettt en et eren e 150
SORT() cvvveeeeeeeeeee et e e e eees et e e st ee et e e et ee et et e e e e et et et et ee e e et ettt e et et en et ettt n et et ern e, 151
SUBSTRING() «.eteeeeeeeeeeeteeeseeeeeeseseseeeeeesetes e eeeeesesesesteeeees s seeeeeeses e e e et et et s et e et et en e seee et erenneenns 151
TAN(<o teeeeee et ee ettt et e e et e e et e ettt e et e e ettt et ettt e et et et e et ettt e et et et n ettt er e 152
TANH() ettt ettt ettt ettt e ettt e et et et e et e e et ettt et e ettt et en e 152
TRIM() veeeeeeeeeeeeteeeeeeeeee et e s e e et et s e eee e et es s eeeeee et et e et e e eeee s e s eeeee et e e et ee et s s e e eet et s e e et eeeneneeen. 153
TRUNGC() vttt eeeeeeee et e eeee e e et s seee et eeee e e et e e et e e et et et et s e et eeee et ee e et eee s et e e eeeees et s seeeesen s eeeeeeenenen 154
UPPER() vttt eeeeet et eeeeeeee et e e eeee et s e ete e et e e et et et et eeeeee e et et et e e et ee et et en et e e et et et s et etenen e et enenan 154

viii

Firebird 2.1 Language Ref. Update

13. EXternal fUNCLIONS (UDFS)ccoiiiiiieiee ettt e e e e e e e e e s s et e e e e e e e e e e eneareees 156
= o 1N 156
= Lo o 1= S 156
= o [0 I Y 157
F= L0 1o L o 11 1 157
= Lo Lo 1Y I I IS T T oY [158
F= Lo (o 1LY I 4 U = 158
F= Lo 1o 11 o a1 o TR 159
F= Lo [0 IST<Todo] (o R 159
= Lo [0 VLT 159
= Lo [0 A=Y= ¥ S 160
ASCI I _Char 160
= XS o I Y- Y 161
= L T 1 1 162
= L= 162
= L= 0 2 163
oI 0 K- U U 163
o I 0 T | 164
oI 0 T 0 164
C I L Mgt —————— 165
Lo o 1= 165
(o 0 1= 1 1 166
Lo o] R 166
Lo [0) N 167
[0 0T 0)T 167
0 Y 168
OET EXACT Ti IMEST @ITP .uuuuuuuuiuiuiiii s nsasssnsnsnsnsnsnnnnnsnnnnnnn 168
ST o YU o 169
(ST O U o= L =Y 169
N 0 T 169
L 00 e, 169
L 0GL0 i ————————— 170
01T 170
N Lo 171
O T 1 0 172
110 Yo T 173
Ea 0 101 T T 174
S 0 17/ 175
O RSP 176
L= 1 o 176
F T gt oo ——————— 177
(0T 1 Lo IR IS 7 o 10 o o T 177
0 T Lo 178
0 O T 0 179
LY o [0 180
LS o | 180
LS I N 181
L I 1 T 181
LS o | U 182
£ = Lo N 182
S 183
L3 A T o /22 o oY« S 183

Firebird 2.1 Language Ref. Update

£ S =Y o 184

£ 011 184
SUD S T L BN oo 185

L= PSPPI 186
AN 186

LR L ToX= NI ST A G UL g o= L = 187

F N 0= 010 D N N\ o (== SRR 189
Character set NONE data acCepted “aS IS ...oiciiiiiiiiiieiie et e e e e e e e 189
Understanding the WITH LOCK ClaUSEc.vuviiiiiie et e e e e e et rae e e as 190
SyntaX and DENAVIOULcoiiiiiiiiiiiiec e e e s e e e e e e e e areeeeaeeeaaa 190

How the engine deals With WITH LOCKccuuiiiiiiee it eee e e e st e e e e e e s ssnrrree e e e e e e 191

The optional “OF <col umm- names>" SUD-ClaLSEcccveeiieeeiiicceee e 192

Caveats USING WITH LOCK ..oiiiiiiiiiiiiiieiee e e e e e e sttt e e e e e e e s ettt e e e e e e e s s st ae e e e e e e s e e s snnntnaeeeaaeens 192

Examples using explicit IOCKINGcccuiiieiiie et 192

A NOtE ON CSTRING PAIAIMELELS ...uvvuiiieeeiieeeiiiier e e e e e ettt s s e e e e e e e ae e s e e e e e e e aata s s eeeeeeeerennaaaeaeees 193
Passing NULL t0 UDFS N Frebird 2ociiiiiiiiiiiiieiee ettt e e e e e e snnaaae e e e e e e e e ennes 193
“Upgrading” i b_udf functionsin an existing databaseccccvveeerieei i 194
Maximum number of indices in different Firebird VErSIONSccovviiiieeiiiiiiee e 194
AppendiX B: DOCUMENE HISLOMYuveiiiiieeiiiiiiiii e e s e e e e e e e s st re e e e e e e e s e sntbaraeeeaeeeas 196
APPENIX C: LICENSE NOLICE ...uvviiiiee e ittt ee et e e e s e e e e e s e et e e e e e e e e s e aantrreeeeaeeseeanassrnnes 197

List of Tables

4.1. Character SetS NEW iN FIFEDITToooiiiiiiiiie e 12
4.2. Collations NeW iN FIrEDITdoooiiiiie e e e 14
5.1. SPeCific COlAtioN GIITIOULEScuiiiiiiiiie et e e nrne e e 17
5.2. Maximum indexable (VAR)CHAR [ENGENoiiiiii e 27
5.3. Max. indices per table, FIrehird 2.0 ... 28
6.1. NULLsS placement in ordered COIUMNSoiiiiiiiiiieiiie e 76
10.1. Comparison of [NOT] DISTINCT 10 “=" @Nd “<>"uuiiiiiiieii et e e e e e 114
12,1, POSSIDIE CASTS ittt ettt e e et e e e e e e a e e e e e e e e e e 124
12.2. RANQES fOIr EXTRACT TESUITSeieiieiiiiee ettt e e e e e e e ee e 131
12.3. Context variables in the SYSTEM NAMESPACEuuveiiiiiieie e e st 144
A.1l. How TPB settings affect eXpliCit [OCKINGcvviiiiiiieee e 191
A.2. Max. indices per table in FIrebird 1.0 — 2.0oooiiiiiiiiiiieee e 195

Xi

Chapter 1

Introduction

Subject matter

What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.1.x.
It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipul ation Language)

» Transaction control statements

e PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

» Operators and predicates

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.1 SQL reference, you need:

» ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht nl)
» Thisdocument

Non-SQL topics are not discussed in this document. These include:

* ODSversions

» Buglistings

 Installation and configuration

» Upgrade, migration and compatibility
» Server architectures

* AP functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other docu-
mentation viathe Firebird Documentation Index at http://www.firebirdsgl.org/index.php?op=doc.

Versions covered

This document covers al Firebird versions up to and including 2.1.2.

http://www.firebirdsql.org/index.php?op=doc

Introduction

Authorship

More than 90% of the text in this document is new. The remainder was lifted from various Firebird Release
Notes editions, which in turn contain material from preceding sources like the Whatsnew documents. Authors
and editors of the included materia are:

J. Beedley

Helen Borrie

Arno Brinkman

Alex Peshkov

Nickolay Samofatov

Adriano dos Santos Fernandes
Dmitry Y emanov

Completeness

This version of the guide is 99% complete and hopefully 100% correct. The definitive version is planned for
August or September 2009.

Miscellaneous notes

Deprecated is not (always) deprecated

The term “deprecated” is used very loosely in this document. It generally indicates that a certain feature is no
longer recommended in new code because abetter or more standards-compliant alternative hasbecomeavailable.
It does not always mean that there are concrete plans for removal in afutureversion. In fact, many of the features
marked “deprecated” here may be with us for along time to come!

Chapter 2

Reserved words and keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT

BIT_LENGTH

BOTH

CASE

CHAR_LENGTH
CHARACTER_LENGTH
CLOSE

CONNECT

CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
DISCONNECT

FETCH

GLOBAL

INSENSITIVE
LEADING

LOWER
OCTET_LENGTH

OPEN

RECREATE
RECURSIVE

RELEASE
ROW_COUNT

ROWS

SAVEPOINT

Reserved words and keywords

SENSITIVE
START
TRAILING
TRIM
USING

New keywords

Thefollowing words have been added to Firebird as non-reserved keywords. M ost of them are names of internal
functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCII_CHAR
ASCII_VAL
ASIN

ATAN
ATAN2
BACKUP
BIN_AND
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK

CEIL
CEILING
COALESCE
COLLATION
COMMENT
CoSs

COSH

coT
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP

FLOOR
GEN_UUID
GENERATED
HASH

IF
INSERTING
LAST
LEAVE

LIST

LN

Reserved words and keywords

LOCK
LOG

LOG10
LPAD
MATCHED
MATCHING
MAXVALUE
MILLISECOND
MINVALUE
MOD

NEXT
NULLIF
NULLS
OVERLAY
PAD

Pl

PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR_ARRAY
SEQUENCE
SIGN

SIN

SINH

SPACE
SQRT
STATEMENT
TAN

TANH
TEMPORARY
TRUNC
WEEK
UPDATING

Dropped since InterBase 6

No longer reserved
The following words are no longer reserved in Firebird 2.1, but are till recognized as keywords:

ACTION

Reserved words and keywords

CASCADE
FREE_IT
RESTRICT
ROLE
TYPE
WEEKDAY
YEARDAY

No longer keywords

The following are no longer keywordsin Firebird 2.1:

BASENAME

CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

Possibly reserved in future versions

Thefollowing words are not reserved in Firebird 2.1, but are better avoided asidentifiers because they will likely
be reserved — or added as keywords —in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - " (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - " can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

- atable to store our valued custoners in:
create table Custoners (

name varchar (32),

added_by varchar (24),

custno varchar(8),

pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts
Availablein: DSQL, ESQL, PSQL
Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “ C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

dat atype 'date/tinmestring'

Miscellaneous language elements

Examples:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943

insert into Appointments

(Empl oyee_Id, dient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, tine '16:00'")
new. |l astmod = timestanp ' now ;

See also: CAST

CASE construct

Availablein: DSQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There are two syntactic
variants:

e Thesimple CASE, comparableto aPascal case oraCswi t ch.
» The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE
Syntax:
CASE <t est - expr >
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]

[ELSE defaul tresult]
END

Whenthisvariantisused, <t est - expr > iscomparedto<expr > 1, <expr > 2 etc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and thereis an ELSE clause, def aul t r esul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

The match is determined with the “=" operator, so if <t est - expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the ssmple CASE construct is the DECODE() function, available since Firebird 2.1.
Example:

sel ect nane,

Miscellaneous language elements

age,
case upper (sex)
when 'M then ' Mle'
when 'F' then ' Fenal '
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE
WHEN <bool _expr> THEN result
[WHEN <bool _expr> THEN result ...]
[ELSE defaul tresult]

END

Here, the <bool _expr >s are tests that give a ternary boolean result: TRUE, FALSE, or NULL. The first ex-
pression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause, de-
faul tresult isreturned. If no expression is TRUE and thereis no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVot e = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Added in: 1.5

Description: BIGINT is the SQL99-compliant 64-hit signed integer type. It isavailablein Dialect 3 only.
BIGINT numbers range from -2%3 .. 2%3-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.
Example:

create tabl e Wol eLott aRecords (
id bigint not null primary key,
description varchar (32)

)

BLOB data type

Text BLOB compatibility with VARCHAR
Changedin: 2.1

Description: Text BLOBs that are within the VARCHAR size limit (32765 bytes) can now be treated as VAR-
CHARs in various situations:

» |n assignments, conversions and concatenations.

« With theinterna functions CAST, LOWER, UPPER, TRIM and SUBSTRING.

Various enhancements

Changedin: 2.0

10

Data types and subtypes

Description: In Firebird 2.0, severa enhancements have been implemented for text BLOBS:

» DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning aBLOB to aBLOB or astring to aBLOB.
Example:

sel ect NaneBl ob from MyTabl e
where NameBl ob collate pt_br = 'Joao

New character sets

Addedin: 1.0, 1.5, 2.0, 2.1

The following table lists the character sets added in Firebird.

11

Data types and subtypes

Table4.1. Character setsnew in Firebird

Name Max bytes/ch. L anguages Added in
CP943C 2 Japanese 21
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 =DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
GBK 2 Chinese 21
1SO8859_2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1S08859 5 1 Cyrillic 15
1SO8859_6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859_8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 2.0
T1S620 1 Thai 21
uTFg) 4 All 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Vietnamese 20

®In Firebird 1.5, UTF8 is an dlias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
in its own right, without the drawbacks of UNICODE_FSS.

12

Data types and subtypes

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at
the end of the book.

New collations

Addedin: 1.0,1.5,15.1,20,2.1

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported in the Release Notes and other documents. This information in this column is probably incomplete;
some collations with an empty Details field may still be case insensitive (ci), accent insensitive (ai) or dictio-
nary-sorted (dic).

Please note that the default — binary — collations for new character sets are not listed here, as doing so would
add no meaningful information.

13

Data types and subtypes

Table4.2. Collationsnew in Firebird

Character set Collation Language Details Added in
CP943C CP943C_UNICODE Japanese 21
GBK GBK_UNICODE Chinese 21
1SO8859_1 ES ES CI_Al Spanish ci, ai 2.0

FR_FR CI_Al French ci,a 2.1
PT_BR Brazilian Portuguese ci,a 20
1SO8859 2 CS Cz Czech 10
ISO_HUN Hungarian 15
ISO_PLK Polish 2.0
1SO8859 13 LT LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
UNICODE_CI All Ci 21
WIN1250 BS BA Bosnian 20
PXW_HUN Hungarian Ci 10
WIN_CzZ Czech Ci 20
WIN_CZ_CI_Al Czech ci,a 2.0
WIN1251 WIN1251 UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 2.0
WIN1257 WIN1257_EE Estonian dic 2.0
WIN1257 LT Lithuanian dic 20
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 2.0
T1S620 T1S620_UNICODE Thai 21

A note on the UTF8 collations

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, & b, B...

The UCS_BASIC collation sorts in Unicode code-point order: A, B, a, b, &.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

14

Data types and subtypes

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones
listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation 1S08859 1 UNI CODE for |1S08859 1

Thenew Unicode collationsall havethe name of their character set with_UNICODE added. (Thebuilt-in Unicode
collationsfor UTF8 arethe exceptionto therule.) They are defined, along with the other collations, in the manifest
filef bi ntl . conf inFirebird'si nt| subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT UNI for 1S08859 1 fromexternal ('I1SC8859 1 UN CCODE')

See CREATE COLLATION for the full syntax.

15

Chapter 5

DDL statements

The statements in this chapter are grouped by the type of database object they operate on. For instance, ALTER
DATABASE, CREATE DATABASE and DROP DATABASE are al found under DATABASE; DECLARE EXTER-
NAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; etc.

GRANT and REVOKE, which can operate on avariety of object types, are together under Privileges.

COLLATION

CREATE COLLATION

Availablein: DSQL

Addedin: 2.1

Description: Adds a collation to the database. The collation must already be present on your system (typically

in alibrary file) and must be properly registered in a. conf fileinthei nt| subdirectory of your Firebird
installation. Y ou may also base the collation on one that is aready present in the database.

Syntax:
CREATE COLLATI ON col | name
FOR char set
[FROM basecol | | FROM EXTERNAL (' extnane')]

[NO PAD | PAD SPACE]

[CASE [| N] SENSI TI VE]

[ACCENT [I N] SENSI TI VE]
['<specific-attributes>']

<specific-attributes>
<attribute>

<attribute> [; <attribute> ...]
attrnane=attrval ue

col I nane = the nane to use for the new collation

char set = a character set present in the database
basecol | = a collation already present in the database
ext nanme = the collation nane used in the .conf file

* If noFROM clauseispresent, Firebird will scanthe. conf file(s)inyouri nt | subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
is the same as specifying “FROM EXTERNAL (‘col | nane")".

16

DDL statements

The single-quoted ext nane is case-sensitive and must be exactly equal to the collation hame
inthe. conf file. Thecol | name, char set and basecol | parameters are case-insensitive,
unless surrounded by double-quotes.

Foecific attributes: Thetable below liststhe available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE and UNICODE_CI”.

Table5.1. Specific collation attributes

Name Values Valid for Comment
DISABLE-COMPRES- |0,1 1 bpc Disables compressions (aka contractions). Compres-
SIONS sions cause certain character sequencesto be sorted as

atomic units, e.g. Spanish c+h as a single character
ch.
DISABLE-EXPAN- 0,1 1 bpc Disables expansions. Expansions cause certain char-
SIONS acters (e.g. ligatures or umlauted vowels) to be treated
as character sequences and sorted accordingly.
ICU-VERSION default |UNI Specifies the ICU library version to use. Valid
or Mm values are the ones defined in the applica

ble <intl _nodul e> element inintl/fbintl.
conf . Format: either the string literal “def aul t” or
a maor+minor version number like “3.0" (both un-
guoted).

LOCALE xx_YY UNI Specifies the collation locale. Requires complete ver-
sion of ICU libraries. Format: a locale string like
“du_NL" (unquoted).

MULTI-LEVEL 0,1 1 bpc Uses more than one ordering level.

SPECIALS-FIRST 0,1 1 bpc Orders special characters(spaces, symbolsetc.) before
alphanumeric characters.

Examples:
Simplest form, using the name asfound in the . conf file (case-insensitive):

create collation iso8859 1 unicode for is08859 1

Using a custom name. Notice how the “external” name must now exactly match the name in the
.conf file

create collation lat_uni
for is08859 1
fromexternal ('1S08859 1 UN CCDE)

Based on a collation already present in the database:

create collation es_es_nopad_ci
for is08859 1

17

DDL statements

fromes_es
no pad
case insensitive

With a special attribute (case-sensitive!):

create collation es_es_ci_conpr
for is08859 1
fromes_es
case insensitive
' DI SABLE- COVPRESSI ONS=0'

Tip

If you want to add a new character set with its default collation in your database, declare and run the stored
proceduresp_regi st er _character_set (name, nmax_bytes_per_character), foundinm sc/
i ntl.sql under your Firebird installation directory. Please note: in order for this to work, the character set
must be present on your system and registered ina. conf fileinthei nt | subdirectory.

DROP COLLATION
Availablein: DSQL
Added in: 2.1

Description: Removes a collation from the database.

Syntax:

DROP COLLATI ON name

Tip

If youwant to remove an entire character set with al its collationsfrom your database, declare and run the stored
procedure sp_unr egi st er _char act er _set (nane), found inm sc/intl.sql under your Firebird
installation directory.

COMMENT

Availablein: DSQL
Added in: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:

COWENT ON <object> IS {' sometext' | NULL}

18

DDL statements

DATABASE

| <basic-type> object nanme

| COLUMN rel ationnane. fiel dnane
| PARAMETER procnane. par ammane

<obj ect >

<basi c- t ype> CHARACTER SET | COLLATION | DOVAIN | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX

| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

Note

If you enter an empty comment (* *), it will end up as NULL in the database.

Examples:
conment on database is 'Here''s where we keep all our custoner records.'
conment on table Metals is 'Also for alloys'
comment on colum Metals.IsAlloy is 'O = pure netal, 1 = all oy’

coment on index ix_sales is 'Set inactive during bulk inserts!'

DATABASE

CREATE DATABASE

Availablein: DSQL, ESQL

16 Kb page size supported, 1 and 2 Kb deprecated
Changedin: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with
these page sizes, but it will connect to existing small-page databases without any problem.

Syntax (partial):
CREATE { DATABASE | SCHEMA}

t iDAGE_SI ZE [=] size]

size ::= 4096 | 8192 | 16384

19

DDL statements

If the user supplies a size smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizes will be silently converted to the next lower supported size.

ALTER DATABASE

Availablein: DSQL, ESQL

Description: Alters a database's file organisation or togglesits “ safe-to-copy” state.
Syntax:

ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FILE 'filepath']
[DROP DI FFERENCE FI LE]
[{BEGA N | END} BACKUP]
<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> ;= FILE 'filepath’
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PAGE] 9]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not availablein ESQL.

BEGIN BACKUP

Availablein: DSQL

Addedin: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter database begi n backup

END BACKUP

Availablein: DSQL

Added in: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,

thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

20

DDL statements

Example:

al ter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goesinto
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
al ter database add difference file 'C: \Firebird\ Databases\Fruitbase.delta
Notes:

» This statement doesn't readlly add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

» If you provide a relative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

» |f you want to change an existing setting, DROP the old one first and then ADD the new one.

» When not overridden, the delta file gets the same path and filename as the database itself, but with the ex-
tension. del t a

DROP DIFFERENCE FILE

Availablein: DSQL

Addedin: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop afile. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

al ter database drop difference file

21

http://www.firebirdsql.org/index.php?op=doc

DDL statements

DOMAIN

CREATE DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changed in: IB

Description: Any context variable that is assignment-compatibl e to the new domain's datatype can be used asa
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create domai n DDate as
dat e

default current _date
not null

ALTER DOMAIN

Availablein: DSQL, ESQL

Rename domain
Added in: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter domain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changedin: IB

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

22

DDL statements

Example:

al ter donmin DDate
set default current_date

EXCEPTION

CREATE EXCEPTION

Availablein: DSQL, ESQL

Message length increased
Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create excepti on Ex_TooManyManagers
'Too nmany nmanagers: An attenpt was made to create nore managers than the
maxi mrum defined in the Limts table. If you really need to create nore
managers than you have now, raise the linmt first. However, please consult
your departnent''s manager before doing so. Qtherw se, your decision may
be overturned | ater and the additional manager(s) renoved.'

Note

The maximum exception message |ength depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION
Availablein: DSQL
Addedin: 2.0

Description: If the exception does not yet exigt, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

RECREATE EXCEPTION

Availablein: DSQL

23

DDL statements

Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on

the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION

Availablein: DSQL, ESQL

Description: This statement makes an external function (UDF) available in the database.

Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nanme
[<arg_type decl> [, <arg type decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_nane' MODULE_NAME 'Iibrary_nange'

sqgl type [BY DESCRI PTOR] | CSTRI NG | engt h)

<arg_type_decl >
sql type [BY {DESCRI PTOR| VALUE}] | CSTRI NE | engt h)

<return_type_decl >

Restrictions

e TheBY DESCRIPTOR passing method is not supported in ESQL .

You may choose | ocal nanme freely; thisis the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the

end of the book).

BY DESCRIPTOR parameter passing
Availablein: DSQL
Addedin: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLsin ameaningful way. Notice that this only works if the person who wrote the function

24

DDL statements

has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n
Availablein: DSQL, ESQL
Addedin: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” clauseadded —n being the position of said parameter. Thisclause datesback to | nterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Developer's Guide though).

ALTER EXTERNAL FUNCTION

Availablein: DSQL

Added in: 2.0

Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.
Syntax:

ALTER EXTERNAL FUNCTI ON f uncnane
<nmodi fication> [<nodi fication>]

<nmodi fication> ::= ENTRY_PO NT 'new entry-point'
| MODULE_NAME ' new npdul e- nane'

Example:

alter external function Phi nodul e name ' NewlUdf Li b’

FILTER

DECLARE FILTER
Availablein: DSQL, ESQL
Changedin: 2.0
Description: Makes a BLOB filter known to the database.
Syntax:
DECLARE FILTER filtername

I NPUT_TYPE <bl obt ype> OUTPUT_TYPE <bl obt ype>
ENTRY_PO NT ' function_nane’ MODULE_NAME 'Iibrary_nange'

25

DDL statements

<bl obtype> ::= nunber | <menonic>
<menoni ¢> = binary | text | blr | acl | ranges | sumary | format
| transaction_description | external file_description

The possihility to indicate the BLOB types with mnemonicsinstead of numberswas added in Firebird
2. The predefined mnemonics are case-insensitive.

Example:
decl are filter Funnel

i nput _type blr output_type text
entry_point 'blr2asc' nodul e_nanme 'nyfilterlib’

Tip

If you want to define mnemonics for your own BLOB subtypes, you can add them to the RDB$TY PES system
table as shown below. Once committed, the mnemonics can be used in subsequent filter declarations.

insert into rdb$types (rdb$field_nane, rdb$type, rdb$type_nane)
val ues (' RDB$FI ELD SUB TYPE , -33, 'MD")

Thevaluefor r db$f i el d_nanme must alwaysbe'RDB$FIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

CREATE INDEX
Availablein: DSQL, ESQL
Description: Creates an index on atable for faster searching, sorting and/or grouping.
Syntax:
CREATE [UNI QUE] [ASC[{ ENDI NG | [DESC[ENDI NG] | NDEX i ndexnane
ON t abl enane

{ (<col> 1], <col>...]) | COWUTED BY (expression) }

<col> ::= a colum not of type ARRAY, BLOB or COWPUTED BY

UNIQUE indices now allow NULLs

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

26

DDL statements

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upnanme on persons conputed by (upper(nane));
conmi t;

-- the following queries will use ix_upnane:

sel ect * from persons order by upper(nane);

select * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper(nanme) = ' BROMN ;

del ete from persons where upper(nane) = 'BROMN and age > 65;

create descending index ix_events_yt

on MyEvents

conputed by (extract(year from StartDate) || Town);
conmi t;

-- the following query will use ix_events_yt:

select * from MyEvents
order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytesis 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table5.2. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per char set type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

27

DDL statements

Maximum number of indices per table increased
Changedin: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a “hard” ceiling, the number of indices creatable in practice is till limited by the
database page size and the number of columns per index, as shown in the table below.

Table5.3. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 cal 2cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table also including Firebird versions 1.0-1.5, see the Notes at the end of the book.

Privileges: GRANT and REVOKE

REVOKE ADMIN OPTION
Availablein: DSQL
Added in: 2.0

Description: Revokes a previously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multiple roles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-list> FROM <grantee-|ist>
<role-list>

<grantee-list>
<grant ee>

role [, role ...]
[USER] <grantee> [, [USER] <grantee> ...]
usernane | PUBLIC

28

DDL statements

Example:
revoke admin option for nmanager from john, paul, george, ringo

If auser has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure or by
atrigger. Stored procedures and triggers are written in Procedural SQL. Most SQL statements are also avail-
able in PSQL, sometimes with restrictions or extensions. Notable exceptions are DDL and transaction control

statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE
Availablein: DSQL, ESQL
Description: Creates a stored procedure.
Syntax:

CREATE PROCEDURE procnane
[(<inparan» [, <inparant ...])]
[RETURNS (<outparanms> [, <outparant ...])]
AS
[<decl arati ons>]
BEG N
[<PSQL st at ement s>]
END

<param decl > [{= | DEFAULT} val ue]
<par am decl >

parammane <type> [COLLATE col | ati on]
sql _datatype | [TYPE OF] dommin

See PSQ.:: DECLARE for the exact syntax

<i npar ane

<out par an
<par am decl >
<type>

<decl arati ons>

Domains instead of datatypes

Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypes when declaring input/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value.

Example:

create domai n bool 3

29

DDL statements

smal | i nt
check (value is null or value in (0,1));

create domai n bi gposnum
bi gi nt
check (value >= 0);

/* Determines if Ais a multiple of B: */

set term#

create procedure isnultiple (a bigposnum b bigposnun
returns (res bool 3)

as
declare ratio type of bigposnum -- ratio is a bigint
decl are remmi nder type of bigposnum -- so is renmainder
begi n

if (ais null or bis null) then res = null;
else if (b = 0) then

begi n
if (a =0) thenres =1; else res = 0;
end
el se
begi n
ratio = a / b; -- integer division

remai nder = a - b*rati o;
if (remainder = 0) then res = 1; else res = 0;
end
end#
set term; #

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example

create procedure Spani shToDutch
(es_1 varchar(20) character set is08859 1 collate es_es,
es_2 ny_char_domain collate es_es)
returns
(nl _1 varchar (20) character set is08859 1 collate du_nl,
nl_2 my_char_donain collate du_nl)
as
declare s_tenp varchar (100) character set utf8 collate unicode;
begi n

end

Default argument values

Changedin: 2.0

30

DDL statements

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items (possibly even al) from the end of the argument list.

Syntax:
CREATE PROCEDURE procnane (<inparan» [, <inparank ...])
<inparankt ::= paramane datatype [{= | DEFAULT} val ue]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, alowing you to write stub code without
having to resort to dummy statements.

Example:
create procedure grab_ints (a integer, b integer)
as

begi n
end

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Added in: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) = "'-")

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

31

DDL statements

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypes when declaring input/output
parameters and local variables. See CREATE PROCEDURE for syntax and details.

Restriction on altering used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

CREATE OR ALTER PROCEDURE
Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE

Availablein: DSQL

32

DDL statements

Added in: 1.0

Description: Creates or recreates astored procedure. If a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

CREATE SEQUENCE
Availablein: DSQL
Addedin: 2.0

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence- hame
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dialect. However:

« |f theclient dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.

» |f generator values are fed into a32-bit field or variable, al goeswell until the actual value exceedsthe 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could aso lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

33

DDL statements

CREATE GENERATOR
Availablein: DSQL, ESQL

Deprecated in: 2.0 —use CREATE SEQUENCE

CREATE SEQUENCE preferred
Changedin: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised
Changedin: 1.0
Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K

pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE
Availablein: DSQL
Added in: 2.0
Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have aways caled agenerator. “ALTER SEQUENCE ... RESTART WITH" isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.
Syntax:
ALTER SEQUENCE sequence- nane RESTART W TH <newval >
<newal > ::= A signed 64-bit integer value.

Example:

al ter sequence seqtest restart with O

Warning

Careless use of ALTER SEQUENCE is amighty fine way of screwing up your database! Under normal circum-
stances you should only use it right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

DDL statements

SET GENERATOR
Availablein: DSQL, ESQL
Deprecated in: 2.0 —use ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-com-
pliant ALTER SEQUENCE syntax is preferred.

Syntax:

SET GENERATOR generat or-nane TO <new- val ue>

<newvalue> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE
Availablein: DSQL
Added in: 2.0

Description: Removes asequence or generator from the database. Its (very small) storage space will be freed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called a generator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.
Syntax:

DROP SEQUENCE sequence- nane
Example:

drop sequence seqtest

See also: CREATE SEQUENCE

DROP GENERATOR
Availablein: DSQL
Added in: 1.0

Deprecated in: 2.0 — use DROP SEQUENCE

35

DDL statements

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:
DROP GENERATOR gener at or - nane

From Firebird 2.0 onward, the SQL-compliant DROP SEQUENCE syntax is preferred.

TABLE

CREATE TABLE

Availablein: DSQL, ESQL

Global Temporary Tables (GTTs)
Added in: 2.1

Description: Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and whenthe GTT isreferenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:
CREATE GLOBAL TEMPORARY TABLE nane

(col um_def [, columm_def | table_constraint ...])
[ON COWM T {DELETE | PRESERVE} RO\

* ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT PRE-
SERVE ROWS a connection-level GTT.

* AnEXTERNAL [FILE] clauseis not allowed on a global temporary table.

Restrictions: GTTs can be “dressed up” with al the features and paraphernalia of ordinary tables (keys, refer-
ences, indices, triggers...) but there are afew restrictions:

» GTTsand regular tables cannot reference one another.

» A connection-bound (“PRESERVE ROWS’) GTT cannot reference a transaction-bound (“DELETE ROWS")
GTT.

» Domain constraints cannot reference any GTT.

» Thedestruction of a GTT instance at the end of its life cycle does not cause any before/after delete triggers
tofire.

Example:

create global tenporary table MyConnGIT (

36

DDL statements

idint not null primary key,
txt varchar (32),
ts timestanp default current_tinmestanp

)

on conmit preserve rows;
commit;

create global tenporary table MyTXGIT (
idint not null primary key,
parent _id int not null references MyConnGIT(id),
txt varchar (32),
ts timestanp default current_timestanp

Ik
commt;
Tip
In an existing database, it's not always easy to tell aregular tablefromaGTT, or atransaction-level GTT from
aconnection-level GTT. Use this query to find out atable's type:
sel ect t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and r.rdb$rel ati on_nane = ' TABLENAME
Or, for an overview of all your relations:
select r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$rel ati on_type = t.rdb$type
where t.rdb$fiel d_name = ' RDBSRELATI ON_TYPE'
and coal esce (r.rdb$systemflag, 0) =0
GENERATED ALWAYS AS
Addedin: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAY S AS for computed fields.

Syntax:
col nanme [coltype] GENERATED ALWAYS AS (expression)
Example:

create table Persons (
idint primary key,
firstnane varchar(24) not null,
m ddl ename var char (24),
| ast nane varchar (24) not null,
full name varchar(74) generated al ways as
(firstname || coalesce(' ' || middlename, "') || ' " || lastnane),
street varchar(32),

37

DDL statements

CHECK accepts NULL outcome
Changedin: 2.0
Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLSs pass and only consider the check failed if the
outcomeisf al se.
Example:

Checks like these:

check (val ue > 10000)

check (Town |ike 'Anst %)

check (upper(value) in ("A, 'B, "X))

check (M ni mum <= Maxi mum

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not nul | ” predicates to your
CHECKsiif they should continue to reject NULL input.

Context variables as column defaults
Changedin: IB

Description: Any context variablethat is assignment-compatible to the column datatype can be used as adefault.
Thiswas aready the casein InterBase 6, but the Language Reference only mentioned USER.

Example:
create table MyData (

idint not null primary key,
record created tinmestanp default current _tinestanp,

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

38

DDL statements

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiple rows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have

exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they constituted the entire unigue key.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide auser-defined name for the automatically created index that enforces the constraint, and
» optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

39

DDL statements

Syntax:

[CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASCI ENDI NG | DESC ENDI NG] | NDEX i ndex_nane]

Examples:

The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust prinmary key using index ix_custno,

This, however:

create table customers (
custno int not null primary key using index ix_custno,

..will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples.

create table people (
idint not null,
ni cknane varchar(12) not null,
country char (4),

constraint pk_people primary key (id),
constrai nt uk_ni cknane uni que (ni ckname) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keysreferencing it descending as well.

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults

Changedin: IB

40

DDL statements

Description: Any context variable that is assignment-compatibl e to the new column's datatype can be used as a
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Added in: 2.0
Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.
Syntax:
ALTER TABLE tabl enanme ALTER [COLUMN] col namre DROP DEFAULT
Example:

alter table Trees alter Grth drop default

Anerrorisraised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
adefault, the new default will replace it. Column-level defaults aways override domain-level defaults.

Syntax:

ALTER TABLE tabl enane ALTER [COLUMN] col nane SET DEFAULT <defaul t >

<default> ::= literal-value | context-variable | NULL
Example:

alter table Custoners alter EnteredBy set default current_user

Tip

If you want to switch off adomain-based default on a column, set the column default to NULL.

41

DDL statements

ALTER COLUMN: POSITION now 1-based
Changedin: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:
ALTER TABLE t abl enane ALTER [COLUM\] col nane POSI TI ON <newpos>
<newpos> ::= an integer between 1 and the nunber of col ums
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome
Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcomeisf al se. For moreinformation see under CREATE TABLE.

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For afull discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause

Availablein: DSQL

42

DDL statements

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide auser-defined name for the automatically created index that enforces the constraint, and
» optionally define the index to be ascending or descending (the default being ascending).

Syntax:
[ADD] [CONSTRAI NT constrai nt - nane]

<constraint-type> <constraint-definition>
[USI NG [ASC[ENDI NG | DESC] ENDI NG] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

RECREATE TABLE
Availablein: DSQL
Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its data in the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

CREATE TRIGGER
Availablein: DSQL, ESQL

Description: Createsatrigger, ablock of PSQL codethat isexecuted automatically upon certain database events
or mutationsto atable or view.

Syntax:
CREATE TRI GGER nane

{<relation_trigger_| egacy>
| <relation_trigger_sql 2003>

| <database_trigger> }
AS
[<decl ar ati ons>]
BEG N
[<st at ement s>]
END
<rel ation_trigger_| egacy> ;.= FOR {tabl enane vi ewnane}

43

DDL statements

<relation_trigger_sql 2003>

<dat abase_tri gger>

<nmutation_list>
mut at i on

db_event

nunber

<decl arati ons>

[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_list>
[POSI TI ON nunber]

[ACTI VE | | NACTI VE]

{BEFORE | AFTER} <nutation_list>
[POSI TI ON nunber]

ON {tabl enane | vi ewnane}

[ACTI VE | 1 NACTI VE]
ON db_event
[POSI TI ON nunber]

nmutation [OR nmutation [OR nmutation]]
| NSERT | UPDATE | DELETE

CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COMWM T | TRANSACTI ON ROLLBACK

0..32767 (default is 0)

See PSQL:: DECLARE for the exact syntax

» “Legacy” and “sgl2003” relation triggers are exactly the same. The only thing that differsis the

creation syntax.

» Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

* When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur

at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers

Added in: 2.1

Description: Since Firebird 2.1, an aternative, SQL-2003-compliant syntax can be used for triggers on tables
and views. Instead of specifying “FOR el at i onnane” before the event type and the optional directives sur-
rounding it, you can now put “ON r el at i onnane” after it, as shown in the syntax earlier in this chapter.

Example:

create trigger biu_books

active before insert or update position 3

on books
as
begi n
if (new.idis null)

then new. id = next val ue for gen_bookids;

end

Database triggers

Added in: 2.1

DDL statements

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT, DISCON-
NECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the database
owner and SYSDBA can create, alter and drop these triggers.

Syntax:

CREATE TRI GGER nane
[ACTI VE | | NACTI VE]

ON db_event
[PCSI TI ON nunber]
AS
[<decl ar ati ons>]
BEG N
[<st at ement s>]
END
db_event = CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COVMM T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl arati ons> ::= See PSQL::DECLARE for the exact syntax
Example:

create trigger tr_connect
on connect
as
begi n
insert into dblog (w e, wanneer, wat)
val ues (current_user, current_tinestanp, 'verbind);
end

Execution of database triggers and handling of exceptions:

» CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
al goes well, the transaction is committed. Uncaught exceptions roll back the transaction, and:

- Inthe case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
- With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

* TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

- InaSTART trigger, the exception is reported to the client and the transaction is rolled back.

- In a COMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit
is canceled.

- InaROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

It followsfrom the above that thereisno direct way of knowing if aDISCONNECT or TRANSACTION ROLL-
BACK trigger caused an exception.

» It aso follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for away around
this Catch-22 situation.

45

DDL statements

* In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SY SDBA.

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

Multi-action triggers
Addedin: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
S0 you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* conmon code: */
new. part nane_upper = upper (new. partnane);
end

46

DDL statements

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e If youtry to read their field values, NULL is returned.
« If you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, alowing you to write stub code without
having to resort to dummy statements.

Example:
create trigger bi_atable for atable
active before insert position O
as

begi n
end

CREATE TRIGGER no longer increments table change count
Changedin: 1.0
Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated

table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER
Availablein: DSQL, ESQL

Description: Altersan existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of arelation trigger cannot be changed.

Syntax:

ALTER TRI GGER nane

47

DDL statements

[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <nutation_ |list> | ON db_event]
[POSI TI ON nunber]
[AS
[<decl arati ons>]
BEG N
[<st at enent s>]
END |

» See CREATE TRIGGER for the meaning of <mut ati on_| i st > etc.

Database triggers
Addedin: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For afull
discussion of thisfeature, see CREATE TRIGGER :: Database triggers.

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

Multi-action triggers
Addedin: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

48

DDL statements

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count
Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can till work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

CREATE OR ALTER TRIGGER
Availablein: DSQL
Addedin: 1.5

Description: If the trigger does not yet exist, it is created just asif CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

49

DDL statements

DROP TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER
Availablein: DSQL
Addedin: 2.0

Description: Creates or recreates atrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

Restriction on recreating used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW

CREATE VIEW

Availablein: DSQL, ESQL

Per-column aliases supported in view definition

Changedin: 2.1

Description: Firebird 2.1 and up allow the use of column aliasesin the SELECT statement. Y ou can alias none,
some or al of the columns; each alias used becomes the name of the corresponding view column.

Syntax (partial):

CREATE VI EW vi ewnane [<full _colum_li st >]

50

DDL statements

AS

SELECT <columm_def> [, <columm_def> ...]
FROM . ..

[WTH CHECK OPTI ON|

<full _colum_list> ::= (colnane [, colnane ...])
<col um_def > ::= {source_col | expr} [[AS] colalias]
Notes:

 If the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

* The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you aias the
offending columns in the SELECT clause.

Full SELECT syntax supported
Changedin: 2.0

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements. Con-
sequently, the following elements are (re)alowed in view definitions: FIRST, SKIP, ROWS, ORDER BY, PLAN
and UNION.

Note

The use of a UNION within aview is currently only supported if you supply a column list for the view (this
list is normally optional):

create view vpl anes (nake, nodel) as
sel ect make, nodel fromjets
uni on
sel ect nake, nodel from props
uni on
sel ect nake, nmodel fromgliders

PLAN subclause disallowed in 1.5
Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
aPLAN isallowed again.

Triggers on updatable views block auto-writethrough
Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird

51

DDL statements

2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
Insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, al INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create vi ew vbase as sel ect x from base;

set term#;
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new x = 33;
insert into base val ues (new. x, 0);
end#
set term;#

Notes:

» Please notice that the problem described above only occured for NOT NULL columns that were left outside
the view.

» Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to

something valid. But then therewas arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

RECREATE VIEW

Availablein: DSQL

52

DDL statements

Added in: 1.5

Description: Creates or recreates a view. If aview with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

53

Chapter 6

DML statements

DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
[TRANSACTI ON nane]
FROM {t abl ename | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort _itens]
[ROAE <n» [TO <n>]]
[RETURNI NG col unmms [| NTO <vari abl es>]]

<nP, <n> ;.= Any expression evaluating to an integer.
<vari abl es> = :varnanme [, :varnane ...]

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e WHERE CURRENT OF isonly available in ESQL and PSQL.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

e The RETURNING clauseisnot availablein ESQL.

e« The“INTO <vari abl es>" subclauseisonly availablein PSQL.

« When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but isaso valid without it.

DML statements

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

RETURNING
Availablein: DSQL, PSQL
Added in: 2.1

Description: A DELETE statement removing at most one row may optionally include a RETURNING clausein
order to produce aresult set containing values from the deleted row. The clause, if present, need not contain all
of the relation’s columns and may also contain other columns or expressions.

Examples:
del ete from Schol ars

where firstnane = 'Henry' and | astnanme = 'Higgins'
returning | astnane, fullname, id

del ete from Dunbbel | s
order by iq desc
rows 1
returning lastnanme, iq into :lnane, :iq;

Notes:

* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
deleted, thefieldsinthisrow areall NULL. Thisbehaviour may changein alater version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing val ues.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
ROANE <> [TO <n>]
<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

55

DML statements

Points to note:

* |f m> thetotal number of rowsin the dataset, the entire set is del eted.
* |f m=0, no rows are deleted.
* If m<O, an error israised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are del eted.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are deleted.
e Ifm<lorn<1,anerrorisraised.

e If n=ml, norows are deleted.

e If n<ml, anerror israised.

ROWS can a'so be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0

Description: Executes ablock of PSQL code asiif it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out par ans>)]
AS
[<decl arati ons>]
BEG N
[<PSQL st at enent s>]

END
<i npar ans> <paramdecl > = ? [, <inparans>]
<out par ans> <par am decl > [, <outparans>]

par ammane <type> [COLLATE col | ati on]
sql _datatype | [TYPE OF] donain
See PSQL:: DECLARE for the exact syntax

<par am decl >
<type>
<decl ar ati ons>

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n

56

DML statements

insert into AsciiTable values (:i, ascii_char(:i));
=0 + 1
end
end

The next example cal cul ates the geometric mean of two numbers and returnsiit to the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqrt(x*y);
suspend;
end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, snal | est andl ar gest . For al thenumbersintherange
smal | est ..1 ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunmber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunber = small est;
whil e (nunber <= largest) do

begi n
square = nunber * nunber;
cube = nunmber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.
Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#
execute block (...)
as
begi n
statenent 1;
st at enent 2;
end
#
set term; #
In Firebird'sisgl client you must set the terminator to something other than “; ” before you type in the EXE-
CUTE BLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered as
soon as it encounters the first semicolon.

57

DML statements

» Executing a block without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but before it is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?") as placeholders for the input values, not “: a”, “: MyPar ant
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

* If the block has output parameters, you must use SUSPEND or nothing will be returned.

e Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

execut e bl ock
(es_1 varchar(20) character set is08859 1 collate es_es = ?)

returns
(nl _1 varchar(20) character set is08859 1 collate du_nl)
as
decl are s_tenp varchar(100) character set utf8 collate unicode;
begi n
end

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypes when declaring i nput/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value.

Example:

execute block (a nmy_domain = ?, b type of ny_other_domain = ?)
returns (p my_third_domain)
as
declare s_tenmp type of ny_third_domain;
begi n

end

58

DML statements

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parametersfor the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may aso be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnane
[TRANSACTI ON transacti on]
[<in_itenr [, <in_itenr ...]]
[RETURNI NG_VALUES <out _itenmr [, <out_itenr ...]]

<in_itenp = <inparanek [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar ane = an expression evaluating to the declared paraneter type
<out var > = a host |anguage or PSQ. variable to receive the return val ue
<nul I'i nd> = [INDI CATOR] : host _| ang_i ntvar
Notes

e TRANSACTION clauses are not supported in PSQL.
« Expression parameters are not supported in static ESQL , and not in Firebird versions below 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

Examples:
In PSQL (with optional colons):
execut e procedure MakeFul | Nane

:FirstNane, : M ddl enane, :LastNane
returni ng_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Nare
:FirstName, : M ddl enane, :LastNane
returni ng_val ues : Ful | Nane;

...and in Firebird's command-line utility isgl (with literal parameters):

59

DML statements

execut e procedure MakeFul | Nanme
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:

execut e procedure NMakeFul | Name
"M./Ms. ' || FirstName, M ddl enane, upper (Last Name)
returning val ues Ful | Nane;

INSERT

Availablein: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row isinserted), or they can
come from a SELECT statement (0 to many rows inserted).

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | vi ewnane}
{DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <col umm_li st> [I NTO <var_list>]]

<colum_Ilist>
<val ue_source>
<val ue_|ist>
<var_list>
<sel ect _stnt>

col nane [, colnane ...]

VALUES (<value_list>) | <select_stnt>

value [, value ...]

:varname [, :varnane ...]

a SELECT whose result set fits the target columms

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ The RETURNING clauseisnot availablein ESQL.

e The“INTO<vari abl es>" subclauseisonly availablein PSQL.

¢ When returning values into the context variable NEW, this hame must not be preceded by a
colon (“:).

¢ Sincev. 2.0, no column may appear more than oncein the insert list.

INSERT ... DEFAULT VALUES
Availablein: DSQL, PSQL
Added in: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. Thisisonly possible if every NOT NULL or CHECKed columnin

60

DML statements

the table either has a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input values.

Example:

insert into journal default val ues
returning entry_id

RETURNING clause
Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to produce a result set containing values from the inserted row. The clause, if present, need not contain
al of the insert columns and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE tiggers, but not those in AFTER triggers.

Examples:
insert into Scholars (firstnanme, |astname, address, phone, emmil)

values ('Henry', "Higgins', '27A Wnpole Street', '3231212', null)
returning |lastname, fullname, id

insert into Dunbbells (firstname, |astnanme, iqQ)
select fname, Inane, iq fromFriends order by iq rows 1
returning id, firstnane, iqinto :id, :fname, :iq;
Notes:

* RETURNING isonly supported for VALUES inserts and — since version 2.1 — singleton SELECT inserts.

* InDSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT
Changedin: 2.0
Description: A SELECT query used in an INSERT statement may now be a UNION.
Example:
insert into Menbers (nunber, nane)
sel ect nunber, nane from NewMenbers where Accepted = 1

uni on
sel ect number, nane from SuspendedMenbers where Vindicated = 1

61

DML statements

MERGE

Availablein: DSQL, PSQL
Added in: 2.1

Description: Mergesdatainto atable or view. The source may atable, view or derived table (i.e. a parenthesized
SELECT statement). Each source record will be used to update one or more target records, insert a new record
in the target table, or neither. The action taken depends on the provided condition and the WHEN clause(s). The
condition will typically contain a comparison of fieldsin the source and target relations.

Syntax:

MERGE | NTO {tabl enane | viewnane} [[AS] alias]
USI NG {tabl enane | viewnane | (select_stnt)} [[AS] alias]
ON condition
WHEN MATCHED THEN UPDATE SET col nane = value [, colnane = value ...]
VWHEN NOT MATCHED THEN | NSERT [(<col ums>)] VALUES (<val ues>)

<col ums>
<val ues>

col name [, colnane ...]
val ue [, value —

Note: It is allowed to provide only one of the WHEN cl auses
Examples:

nmerge into books b
usi ng purchases p
on p.title = b.title and p.type = 'bk'
when mat ched t hen
update set b.desc = b.desc || '; ' || p.desc
when not mat ched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

merge into custoners c
using (select * fromcustoners_delta where id > 10) cd
on (c.id = cd.id)
when mat ched then update set name = cd. nane
when not nmatched then insert (id, nane) values (cd.id, cd.nane)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

Warning

If the WHEN MATCHED clauseis present and multiple source records match the same record in the target table,
the UPDATE clause is executed for al the matching source records, each update overwriting the previous one.
Thisis non-standard behaviour: SQL -2003 specifies that in such a case an exception must be raised.

62

DML statements

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5
Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They

will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select max(i.rdb$statistics) || ' (" || count(*) || ")

fromrdb$relation_fields rf
where rf.rdb$rel ati on_name = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
havi ng max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contexts in a single expression.

War ning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

63

DML statements

This query returns each tables ID and field count. The subquery refers to flds.rdb
$rel ati on_nane, whichisalso aGROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$relations rels
where rel s.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count(*) as "Fields"
fromrdb$rel ation fields flds
group by flds.rdb$rel ati on_nane

The next query showsthelast field from each table and and its 1-based position. It uses the aggregate
function MAX in a subquery.

sel ect
flds. rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb$field nanme
fromrdb$relation fields flds2
wher e
flds2.rdb$rel ati on_name = flds.rdb$rel ati on_name
and flds2.rdb%field position = max(flds.rdb$field position)
) as "Last field",
max(fl ds.rdb$field_position) + 1 as "Last fiel dpos"
fromrdb$relation fields flds
group by 1

The subquery also contains the GROUP BY item f | ds. r db$r el ati on_nane, but that's not im-
mediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_nanme as "Tabl e",
sun((select count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ati on_nane = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$indi ces
on (i.rdb$relation_name = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is still forbidden and
punishable by exception.

DML statements

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"

or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUP BY list.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NaneBl ob from MyTabl e
where NameBl ob collate pt_br = 'Joao

Common Table Expressions (“WITH ... AS ... SELECT")

Availablein: DSQL, PSQL

Addedin: 2.1

Description: A common table expression or CTE can be described as a temporary view, defined in a preamble
to a SELECT statement, and discarded immediately after the statement's execution. The statement can select

from any CTEs defined in the preamble as if they were regular tables or views. CTES can be recursive, i.e. self-
referencing, but they cannot be nested.

Syntax:

<cte-sel ect > i1 = <preanbl e>
<mai n- st nt >

<pr eanbl e> W TH [RECURSI VE] <cte> [, <cte> ...]

65

DML statements

<cte> ::= nanme [(<colum-list>)] AS (<cte-stnt>)

<col um-1ist> = colum-alias [, colum-alias ...]

<cte-stnt> ;.= any SELECT query or UNION

<mai n- st nt > ::= the main SELECT statenent, which can refer to the

CTEs defined in the preanble
Example:

wi th dept_year budget as (
select fiscal _year
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal year, dept_no
)
sel ect d.dept_no,
d. depart nent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdepartnment d
left join dept_year budget dyb_2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
left join dept_year_budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009
where exists (
select * from proj_dept_budget b
where d.dept_no = b.dept_no
)

Notes:

A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of itsown (no nesting).

» CTEsdefined for the same query can reference each other, but care should be taken to avoid loops.
» Just like regular views, CTES can be referenced from anywhere in the main query.

» Just like aregular view, a CTE can be referenced multiple times in the main query, possibly with different
aliases.

Recursive CTES

A recursive (self-referencing) CTE isaUNION which must have at |east one non-recursive member, the anchor.
The non-recursive member(s) must be placed before the recursive member(s). Recursive members are linked to
each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-recursive
members may be of any type.

Recursive CTES require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may reference itself only once, and it must do so in a FROM clause.

66

DML statements

A great benefit of recursive CTESs is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

The execution pattern of arecursive CTE is asfollows:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
dept _year budget as (
sel ect fiscal _year,
dept _no,
sum(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal _year, dept_no
)
dept _tree as (
sel ect dept _no,
head_dept,
depart nent,
cast('' as varchar(255)) as indent
from depart ment
where head_dept is nul

uni on al

sel ect d.dept_no,
d. head dept,
d. depart nent,
h.indent ||

fromdepartnment d
join dept tree h on d.head dept = h.dept_no
)

sel ect d.dept_no,
d.indent || d.department as departnent,
dyb 2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdept tree d
|l eft join dept_year budget dyb_ 2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
| eft join dept_year budget dyb 2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX €tc) are not
alowed in recursive union members.

» A recursive reference cannot participate in an outer join.

e The maximum recursion depth is 1024.

67

DML statements

Derived tables (“SELECT FROM SELECT”)

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. Put otherwise, it isasubguery in the FROM clause.

Syntax:

(sel ect-query)
[[AS] derived-table-alias]
[(<derived-col um-al i ases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count(relation) as numtabl es

from (select r.rdb$relation_name as relation

count(*) as fieldcount

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
group by relation)

group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbinfo. descr,
dbi nf 0. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes:
» Derived tables can be nested.

» Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselectsand
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
queries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

» Every columninaderived table must have aname. If it doesn't have one by nature (e.g. becauseit's aconstant)
it must either be given an dias in the usual way, or a column aliases list must be added to the derived table
specification.

e The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

68

DML statements

» The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP
Availablein: DSQL, PSQL
Addedin: 1.0

Changedin: 1.5

Deprecated in: 2.0 —use ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:
SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr>
<col ums>

Any expression evaluating to an integer.
The usual output colum specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the“() ” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST O is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nane from Peopl e
order by nanme asc

The following query will return everything but the first 10 names:

select skip 10 id, name from Peopl e
order by nane asc

69

DML statements

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, nanme from Peopl e
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, name from Peopl e
order by name asc

Two Gotchaswith FIRST in subselects
e This:
delete from MyTabl e where IDin (select first 10 ID from My/Tabl e)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, slipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

* Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

... Where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as awhole.

Syntax:

SELECT ... FROM...
GROUP BY <itenpr [, <itemr ...]

<item> ::= colum-nane [COLLATE coll ati on-nane]
| colum-alias
| col um-position
| expression

» Only non-negative integer literals will be interpreted as column positions. If they are outside the
range from 1to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, astheir value is the same for each row.

70

DML statements

* A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

» Thesdect list may not contain expressionsthat can have different valueswithin agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or paosition).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions
Changedin: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:
These three queries all achieve the same resuilt:
sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by | en_nanme
select strlen(lastnane) as |en_nanme, count(*)
from peopl e
group by 1
sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by strlen(lastnane)
History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and

alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and interna functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected

Changedin: 1.0

71

DML statements

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. name, garages. nane
from buses join garages on buses.garage_id = garage.id
where nanme = ' Phideaux |11’

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0

Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables
involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

Syntax:

SELECT ...
FROM <rel ati on> CROSS JO N <rel ati on>

<relation> ::= {table | view| cte | (select_stnt)} [[AS] alias]
Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnmnen
order by Men. age, Wnen. age

-- old syntax:

-- select * fromMen join Wnen on 1 =1
-- order by Men.age, Wnen. age

-- comma synt ax:

-- select * from Men, Wonen
-- order by Men.age, Wnen. age

Named colums JOIN
Added in: 2.1

Description: A named colums join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:

SELECT . ..

72

DML statements

FROM <rel ation> [<join_type>] JO N <rel ati on>
USI NG (col nanme [, colnanme ...])

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [CQUTER]

<rel ati on>
<j oi n_type>

Example:
sel ect *
from books join shelves

usi ng (shel f, bookcase)

The equivalent in traditional syntax:
sel ect *

from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes:

» Thecolumnsinthe USING clause can be sel ected without qualifier. Beware, however, that doing so in outer
joinsdoesn't alwaysgivesthe sameresult asselecting| ef t .col nane orri ght .col nane. Oneof thelatter
may be NULL while the other isn't; plain col name always returns the non-NULL alternative in such cases.

e SELECT * from anamed columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN
Added in: 2.1

Description: A natura join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:

SELECT ...
FROM <rel ati on> NATURAL [<join_type> JON <rel ation>

<rel ati on>
<j oi n_type>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RICHT | FULL} [OQUTER]

Example:
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor = t.tutor and p.class = t.class

73

DML statements

Notes:

» Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't aways gives the same result as selecting | ef t .col nane or ri ght .col nane. One of
the latter may be NULL while the other isn't; plain col nanme always returns the non-NULL alternative in

such cases.

» SELECT * from anatural join returns each common column only once. In outer joins, such acolumn aways

contains the non-NULL alternative except for rows where the field is NULL in both tables.

ORDER BY
Syntax:

SELECT ... FROM ...

ORDER BY <ordering-itenr [, <ordering-itenr ...]

<ordering-iten> ::= {col-nane | col-alias | col-position

[COLLATE col | ati on- nane]
[ASC[ENDI NG | DESC[ENDI N¢]
[NULLS {FI RST| LAST}]

Order by colum alias

Added in: 2.0

Description: Firebird 2.0 and above support ordering by column alias.
Example:

sel ect rdb$character_set _id as charset_id,
rdb$collation_id as coll _id,
rdb$col | ati on_nane as nane

fromrdb$col | ati ons

order by charset_id, coll_id

Ordering by column position causes * expansion

Changedin: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to

determine the sort column(s).
Examples:
The following wasn't possiblein pre-2.0 versions:

select * fromrdb$col |l ati ons

expr essi on}

74

DML statements

order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions

Addedin: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that ex-
pressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

* Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, sinceits value is the same for each row.

NULLs placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULL s appear in the sorted column. Firebird 2.0 has changed the default placement of NULLSs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLsin ordered columns are placed as follows:
* InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.

» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

75

DML statements

Table 6.1. NULLs placement in ordered columns

Ordering NULLs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nulls first — top top
order by Field [asc | desc] nulls last — bottom bottom
Notes

* Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering be-
haviour under Firebird 2.0 and up.

e No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5,
that is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST
on descending sorts.

Examples:

select * from nsg
order by process_tine desc nulls first

sel ect * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder

uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies auser plan for the dataretrieval, overriding the plan that the optimizer would have gen-
erated automatically.

Syntax:

PLAN <pl an_expr >

76

DML statements

[JON | [SORT] [MERGE]] (<plan_itenr [, <plan_itenr ...])

<pl an_expr>
<plan_itenr ::= <basic_item> | <plan_expr>

{table | alias}
{ NATURAL
| I NDEX (<indexlist>))
| ORDER index [INDEX (<indexlist>)]}

<basic_itenr

<i ndexl i st > index [, index ...]

Handling of user PLANs improved

Changedin: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANS:
» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied plans will be checked for correctnessin outer joins.

» Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changed in: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_nyfield index (ix_this, ix_that))

PLAN must include all tables
Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

77

DML statements

Syntax:
With asingle SELECT:

SELECT <col utms> FROM . . .
[WHERE . . .]
[ORDER BY ...]
ROAS <> [TO <n>]

<col ums> = The usual output colum specifications.
<nP, <n> = Any expression evaluating to an integer.
With a UNION:

SELECT [FIRST p] [SKI P g] <col ums> FROM ...
[WHERE ...]
[ORDER BY ...]

UNI ON [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <colums> FROM ...
[WHERE . . .]
[ORDER BY ...]

RONS <> [TO <n>]

With a single argument m the first mrows of the dataset are returned.
Points to note:

* |f m> thetotal number of rowsin the dataset, the entire set is returned.
e If m=0, an empty set is returned.
e |[f m<O, anerror israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.
Points to note when using two arguments:

» |f m> thetotal number of rows in the dataset, an empty set is returned.

« |f mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e |[fm<lorn<1,anerrorisraised.

e If n =ml, an empty set isreturned.

e |fn<ml, anerrorisraised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxesin different subsel ects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can a'so be used with the UPDATE and DELETE statements.

78

DML statements

Table alias must be used if present

Changedin: 2.0

Description: If you give atable an alias in Firebird 2.0 and above, you must use the alias, not the table name,
if you want to qualify fields from that table.

Examples:
Correct usage:
sel ect pears from Fruit
sel ect Fruit.pears fromFruit
sel ect pears fromFruit F
sel ect F.pears fromFruit F
No longer alowed:

select Fruit.pears fromFruit F

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subgueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect nane, phone, hourly rate from cl owns
where hourly_rate < all
(select hourly rate fromjugglers
uni on
sel ect hourly rate from acrobats)
order by hourly rate

UNION DISTINCT

Added in: 2.0

79

DML statements

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:
SELECT (...) FROM (...)

UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

Example:
sel ect nanme, phone fromtransl ators

uni on di stinct
sel ect nanme, phone from proofreaders

Trandators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the samein both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (ideally, asingleton), and
b. precisaly controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It isessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

80

DML statements

WITH LOCK can only be used with atop-leve, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;

« withaview;

» with the output of a selectable stored procedure;
» with an externa table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read

for everybody who considers using this feature.

UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes valuesin atable (or in one or more tables underlying a view). The columns affected are

specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nane] {tabl enane | viewnane} [[AS] alias]

SET col
[WHERE

= newal [, col = newal ...]
{search-conditions | CURRENT OF cursornane}]

[PLAN pl an_i t ens]

[ORDER

BY sort _itens]

[ROA5 <nP [TO <n>]]
[RETURNI NG col umms [NTO <vari abl es>]]

<nP, <n>

<vari abl es>

Any expression evaluating to an integer.
:varname [, :varnane ...]

Restrictions

The TRANSACTION directive isonly availablein ESQL.

WHERE CURRENT OF is only availablein ESQL and PSQL.

The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

Sincev. 2.0, no column may be SET more than once in the same UPDATE statement.

The RETURNING clauseis hot availablein ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

ORDER BY

Availablein: DSQL, PSQL

Added in: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,

but isalso valid without it.

81

DML statements

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now alows aPLAN clause, so users can optimize the operation manually.

RETURNING
Availablein: DSQL, PSQL
Added in: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to produce aresult set containing values from the updated row. The clause, if present, need not contain
al the modified columns and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE tiggers, but not those in AFTER triggers. OLD.f i el dnane and
NEW.f i el dname may both be used in the list of columns to return; for field names not preceded by either of
these, the new value is returned.

Example:
updat e Schol ars
set firstname = 'Hugh', lastname = 'Pickering'
where firstnane = 'Henry' and | astname = 'Higgins'

returning id, old.lastnanme, new. | astnamne

Notes:

* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limitsthe amount of rows updated to a specified number or range.
Syntax:
ROWNE <> [TO <n>]
<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

82

DML statements

Points to note:

» If m> thetotal number of rowsin the dataset, the entire set is updated.
e If m=0, no rows are updated.
* If m<O, an error israised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e |[fm<lorn<1,anerrorisraised.

e If n =m1, norows are updated.

e |fn<ml, anerrorisraised.

ROWS can aso be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Availablein: DSQL, PSQL
Addedin: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If aRETURNING clause is present and more than
one matching record is found, an error is raised.

Syntax:

UPDATE OR | NSERT | NTO
{tabl enane | viewnane} [(<colums>)]
VALUES (<val ues>)
[MATCHI NG (<col ums>)]
[RETURNI NG <col umms> [| NTO <vari abl es>]]

<col ums> = colname [, colname ...]
<val ues> = value [, value]
<vari abl es> = :varname [, :varname ...]

Restrictions

No column may appear more than once in the update/insert column list.

If the table has no PK, the MATCHING clause becomes mandatory.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

L] L] L] L]

Example:

update or insert into Cows (Nane, Nunmber, Location)

83

DML statements

val ues (' Suzie Mo', 3278823, 'Geen Pastures')

mat chi ng (Nunber)
returning rec_id into :id;

Notes:

» Matchesaredetermined with ISNOT DISTINCT, not withthe® =" operator. Thismeansthat one NULL matches
another.

» The optional RETURNING clause:

- ...need not contain all the VALUES columns and may also contain other columns or expressions.
- ...may contain OLD and NEW qualifiers for field names; by default, the new column valueis returned.
- ..returnsfield values as they are after the BEFORE triggers have run, but before any AFTER triggers.

Chapter 7

Transaction
control statements

RELEASE SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Deletes a named savepoint, freeing up all the resourcesit binds.

Syntax:

RELEASE SAVEPO NT name [ONLY]

Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK
Availablein: DSQL, ESQL

Syntax:

ROLLBACK [WORK]

[TRANSACTI ON tr_nane]

[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nane | RELEASE]
* The TRANSACTION clauseisonly availablein ESQL.
» TheRELEASE clauseisonly availablein ESQL, and is discouraged.

e RETAIN and TO are only availablein DSQL.

ROLLBACK RETAIN

Availablein: DSQL

85

Transaction control statements

Added in: 2.0

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
accessit wasthroughthe API call i sc_rol | back_retai ni ng().

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Addedin: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPQO NT] nane
ROLLBACK TO SAVEPOINT performs the following operations:

» All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL
Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

86

Transaction control statements

Syntax:
SAVEPO NT <nane>

<name> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPQOI NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continueto wait until the transaction iscommitted or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can del ete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
conmit;

insert into test values (1);
conmit;

insert into test values (2);
savepoint y;

del ete fromtest;

select * fromtest; -- returns no rows
rol |l back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue aROLLBACK statement, all changes performed in this transaction are backed out via atransac-

87

Transaction control statements

tion-level savepoint and the transaction is then committed. Thislogic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine rel eases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

Tip

If you expect the volume of changesin your transaction to belarge, you can specify the NO AUTO UNDO option
inyour SET TRANSACTION statement, or —if you usethe APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the transaction-level savepoint from being created.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

« undo all actionsin a BEGIN...END block where an exception occurs,

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, all actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepaints.

SET TRANSACTION

Availablein: DSQL, ESQL

Changedin: 2.0

Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME host var]
[READ VRI TE | READ ONLY]
[[ISOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COW TTED [[NO RECORD _VERSI ON] }]
[WAIT | NO WAIT]
[LOCK TI MEOUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQ
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ::= <table_spec> [, <table_spec> ...]

<t abl e_spec> tabl enane [, tablenane .]

88

Transaction control statements

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

<dbhandl es> ::= dbhandle [, dbhandle .]

» TheNAME optionisonly availablein ESQL. It must befollowed by apreviously declared and ini-
tialized host-language variable. Without NAME, SET TRANSACTION applies to the default trans-
action.

* The USING optionisaso ESQL-only. It limits the databases that the transaction can accessto the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnor e_I i mho TPB parameter, availableinthe API since InterBase
times and mainly used by dfix.

LOCK TIMEOUT
Availablein: DSQL
Addedin: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its APl equivalent is the new i sc_t pb_| ock_ti neout TPB
parameter.

NO AUTO UNDO

Availablein: DSQL, ESQL

89

Transaction control statements

Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NO AUTO UNDO is the SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, available in the
API since InterBase times.

90

Chapter 8

PSQL statements

PSQL — Procedural SQL —isthe Firehird stored procedure and trigger language.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Availablein: PSQL
Addedin: 1.0
Deprecated in: 1.5 —use LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))
as
begi n
for select Phr from Phrases into phrase do
begi n
if (num< 1) then break

91

PSQL statements

suspend;
num = num - 1;
end
phrase = '*** Ready! ***'
suspend;
end

Thisselectable SP returns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues a theline“phrase = '*** Ready! ***';”,

Important

Since Firebird 1.5, BREAK is deprecated in favor of the SQL-99 compliant alternative LEAVE.

CLOSE cursor

Availablein: PSQL
Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:
CLCSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE
Availablein: PSQL
Description: Declares a PSQL local variable.
Syntax:

DECLARE [VARI ABLE] varname <var_spec>;

<var_spec> ::= <type> [<coll>] [<default>]
| CURSOR FOR (sel ect-statenent)

<type> = sql _datatype | [TYPE OF] domain
<col | > = COLLATE col l ation
<def aul t > = {=| DEFAULT} val ue

» Obviousdly, aCOLLATE clauseis only allowed with text types.

92

PSQL statements

DECLARE ... CURSOR

Added in: 2.0

Description: Declares anamed cursor and bindsit to itsown SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nane, rdb$systemflag fromrdb$rel ations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then |eave;
suspend;
end
cl ose cur;
end

Notes:

» The SELECT statement may contain named SQL parameters, likein*“. . . wher e nunber = : nuni.Each
parameter must be a variable name that has been declared previously (this includes any in/out params of the
PSQL module). When the cursor is OPENed, the parameter will be assigned the current value of the variable.

* A "FOR UPDATE" clauseis alowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make surethat declared cursor names do not clash with any names defined later onin AS CURSOR clauses.

 If you need a cursor to loop through an output set, it is almost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop
if it is zero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and allow you to operate several cursorsin parallel.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization
Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional .

93

PSQL statements

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
decl are variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL local variables and input/output parameters can be declared with
adomain instead of a datatype. The TY PE OF modifier allows using only the domain's datatype and not its NOT
NULL setting, CHECK constraint and/or default value.

Example:

create procedure MyProc (a int, f ternbool)
returns (b int, x type of bigfloat)
as
declare p int;
declare q int = 8;
declare y stocknumdefault -1;
begi n
<very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains already de-
fined in the database.)

COLLATE in variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, a COLLATE clause is alowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure G nmreText

returns (txt char(32) character set utf8 collate unicode)
as

decl are simounao nytextdonain collate pt_br default 'n&o'

94

PSQL statements

begi n
<extrenely intelligent code here>
end

EXCEPTION

Availablein: PSQL
Changedin: 1.5
Description: The EXCEPTION syntax has been extended so that the user can

a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:

EXCEPTI ON [<except i on- nane> [cust om nessage]]

<exception-nane> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqlcode, ...);
exception;

end

This example first logs some information about the exception or error, and then rethrowsit.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:
exception ex_data_error 'You just |ost some val uabl e data'

exception ex_bad type 'Wong type for record with id "' || new.id;

95

PSQL statements

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Available in: DSQL, PSQL
Changedin: 1.5
Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored

procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Availablein: PSQL
Addedin: 1.5

Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as
aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at ement >
<statenment> :.:= An SQ statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnm varchar(1024);

decl are variable paramint;

begi n
sel ect mi n(SoneFi eld) from SonmeTabl e i nto param
stnt = 'execute procedure '

Pr ocNanme
] (l
cast (param as varchar (20))

N
N
N
)

96

PSQL statements

execute statenment stnt;
end

Warning

Although this form of EXECUTE STATEMENT can also be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generally very, very unwise to use thistrick in order to circumvent the no-DDL
rulein PSQL.

One row of data returned
Thisform is used with singleton SELECT statements.
Syntax:
EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]

<sel ect - st at enent >

= An SQL statenment returning at nost one row of data.
<var > = A

PSQL variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane varchar (100))
as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || TableNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNaneg;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]
DO <conpound- st at enent >

<sel ect - st at enent > = Any SELECT statenent.
<var > ;= A PSQ variable, optionally preceded by “:”

Example:

create procedure Dynani cSanpl eThr ee
(TextField varchar(100),
Tabl eNane var char (100))
returns

97

PSQL statements

(LongLi ne varchar (32000))

as
decl are vari abl e Chunk varchar (100);
begi n
Chunk ="'
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do
if (Chunk is not null) then
LongLine = LongLine || Chunk || ' ';
suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisnoway to validate the syntax of the enclosed statement.
2. Thereare no dependency checks to discover whether tables or columns have been dropped.
3. Operationswill be slow because the embedded statement has to be prepared every timeit is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvaluesarestrictly checked for datatypein order to avoid unpredictabl e type-casting exceptions. For
example, thestring' 1234' would convert to an integer, 1234, but' abc' would give a conversion error.

6. Thesubmitted DSQL statement isalways executed with the privileges of the current user. Privileges grant-
ed to thetrigger or SP that containsthe EXECUTE STATEMENT statement are not in effect whilethe DSQL
statement runs.

All in all, thisfeature isintended only for very cautious use and you should always take the above factors into

account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Availablein: PSQL

98

PSQL statements

Added in: 2.0
Description: Fetchesthe next datarow from acursor'sresult set and stores the column valuesin PSQL variables.
Syntax:
FETCH cursornane INTO [:]varnane [, [:]varnane ...];
Notes:

» The ROW COUNT context variable will be 1 if the fetch returned a data row and 0 if the end of the set has
been reached.

* You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any humber of data rows returned.

FOR SELECT ... INTO ... DO

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause allows for positioned
deletion or update of the current row. FOR SELECT statements may be nested.

Syntax:
FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSCR nane]

DO
<psql - st nt >

A valid SELECT statenent.
A PSQL variable nane, optionally preceded by “:”
A single statement or a block of PSQ code.

<sel ect-stnt>
<var >
<psql - st nt >

» The SELECT statement may contain named SQL parameters, like in “. . . where nunber
= : nunt. Each parameter must be avariable namethat has been declared previously (thisincludes
any in/out params of the PSQL module). When the statement is executed upon loop entry, the
parameter will be assigned the current value of the variable.

99

PSQL statements

Examples:

create procedure shownuns
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnnunbers order by a, b
into :aa, :bb

do
begi n
sm = aa + bb;
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$relation nane fromrdb$rel ations
into :relation
do
begin
for select rdb$field position + 1, rdb$fiel d_nane
fromrdb$rel ation_fields
where rdb$rel ation _name = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

as

begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n

100

PSQL statements

if (town = towntodel ete)
then delete fromtowns where current of tcur
el se suspend;
end
end

Notes:

* A "FOR UPDATE" clauseis alowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make surethat cursor names defined here do not clash with any names created earlier onin DECLARE CUR-
SOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel ar-
gument introduced in Firebird 2.0, LEAVE can break out of surrounding loops aswell. Execution continues with
the first statement after the outermost terminated loop.

Syntax:

[1abel:]
{FOR | WHLE} ... DO

(possi bly nested |l oops, with or wthout I|abels)
LEAVE [abel] ;

Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of code reading “c = 0;”

while (b < 10) do
begi n
insert into Numbers(B) values (:b);
b=Db+ 1;
when any do
begin
execute procedure log_error (current_tinestanp, 'Error in B loop');
| eave;
end
end
c =0;

101

PSQL statements

The next example uses labels. “Leave LoopA” terminates the outer loop, “| eave LoopB’ the
inner loop. Noticethat aplain “l eave” would also suffice to terminate the inner loop.

stnm1l = 'select Name from Farns';
LoopA:
for execute statenent :stntl into :farmdo
begi n
stnt2 = 'select Name from Animal s where Farm=""";
LoopB:
for execute statenment :stnm2 || :farm]|| '"''" into :aninmal do
begi n
if (animal = "Fluffy') then | eave LoopB;
else if (animal = farn) then | eave LoopA
el se suspend;
end
end

OPEN cursor
Availablein: PSQL
Addedin: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

UDFs callable as void functions

Changed in: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning the result value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of ailmost every

102

PSQL statements

UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$CGET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of course this

only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF valid again for view cursors

Changedin: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view cur-
sors. In Firebird 2.1, with itsimproved view validation logic, this restriction has been lifted.

103

Chapter 9

Context variables

CURRENT CONNECTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Changedin: 2.1
Description: CURRENT _CONNECTI ON contains the system identifier of the active connection context.
Type: INTEGER
Examples:
sel ect current_connection from rdb$dat abase
execute procedure P_Login(current_connecti on)

The value of CURRENT_CONNECTI ONis stored on the database header page and reset to 0 upon restore. Since
version 2.1, it isincremented upon every new connection (in previous versions, it was only incremented if the
client read it during a session). As aresult, CURRENT_CONNECTI ON now indicates the number of connections
since the creation — or most recent restoration — of the database.

CURRENT ROLE

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _ROLE is acontext variable containing the role of the currently connected user. If there
isno active role, CURRENT _RCOLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER)

then exception only_nanagers_nay_del et e;
el se

104

Context variables

del ete from Custoners where custno = :custno;

CURRENT _ROLE awaysrepresentsavalid role or NONE. If auser connectswith anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT Tl ME

Available in: DSQL, PSQL, ESQL
Changedin: 2.0

Description: The fractional part of CURRENT _TI ME used to be always“. 0000”, giving an effective precision
of 0 decimals. Now you can specify a precision when polling this variable. The default is still 0 decimals, i.e.
seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0| 1] 2] 3

The optiona pr eci si on argument is not supported in ESQL.
Examples:

sel ect current _tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect current _tine(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Note

The default precision of CURRENT _TI MESTAMP is now 3 decimals, so CURRENT _TI MESTAMP is no longer
the exact sum of CURRENT_DATE and CURRENT_TI ME, unless you explicitly specify a precision.

CURRENT _TI MESTAMP

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: The fractional part of CURRENT Tl MESTAMP used to be aways “. 0000”, giving an effective
precision of O decimals. Now you can specify a precision when polling this variable. The default is 3 decimals,
i.e. milliseconds precision.

Type: TIMESTAMP

105

Context variables

Syntax:

CURRENT_TI MESTAMP [(preci sion)]

precision ::= 0] 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current_tinestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinmestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23. 1200

Note

The default precision of CURRENT _TI MEisstill 0 decimals, so CURRENT _TI MESTAMP is no longer the exact
sum of CURRENT_DATE and CURRENT_TI ME, unless you explicitly specify aprecision.

CURRENT_TRANSACTI ON

Availablein: DSQL, PSQL
Added in: 1.5
Description: CURRENT _TRANSACTI ON contains the system identifier of the current transaction context.
Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transacti on;

The value of CURRENT_TRANSACTI ON is stored on the database header page and reset to O upon restore. It
isincremented with every new transaction.

CURRENT _USER

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

106

Context variables

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custonmers before insert as
begi n
New. added_by = CURRENT_USER,
New. pur chases = O0;
end

DELETI NG

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of aDELETE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:
if (deleting) then
begi n

insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old. make, old.nodel, current_timestanp);
end

GDSCODE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: In aWHEN GDSCODE handling block, the GDSCODE context variable contains a numerical repre-
sentation of the current Firebird error code. Starting with Firebird 2.0, the sameistruein aWHEN ANY block if
its execution was triggered by a Firebird error; otherwise it contains 0. GDSCODE is also 0 in WHEN SQLCODE
and WHEN EXCEPTION handlers, as well as everywhere elsein PSQL.

Type: INTEGER
Example:
when gdscode 335544551, gdscode 335544552,

gdscode 335544553, gdscode 335544707
do

107

Context variables

begi n
execut e procedure | og_grant_error(gdscode);
exit;

end

| NSERTI NG

Availablein: PSQL
Added in: 1.5

Description: Availablein triggersonly, | NSERTI NGindicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. serial_num = gen_id(gen_serials, 1);
end

NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause aruntime exception.

Availablein: DSQL, PSQL, ESQL

108

Context variables

Changedin: 2.0

Description: ' NOW isnot avariablebut astring literal. Itis, however, special in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000”, giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
" NOW iscase-insensitive, and the engine ignores |leading or trailing spaces when casting.

Type: CHAR(3)
Examples:

sel ect 'Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinestanp) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date 'Now from rdb$dat abase
select tinme 'now from rdb$dat abase
sel ect tinmestanp ' NOW from rdb$dat abase

Note

Using the date/time variables CURRENT _DATE, CURRENT _TI ME and CURRENT _TI MESTAMP is generally
preferable to casting ' NOW . Be aware though that CURRENT _TI ME defaults to seconds precision; to get
milliseconds precision, use CURRENT _TI ME(3).

OLD

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it isread-only.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
always return NULL; writing to it will cause a runtime exception.

109

Context variables

ROW COUNT

Availablein: PSQL
Added in: 1.5
Changedin: 2.0
Description: The RON COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable
block.
Type: INTEGER
Example:

update Figures set Nunber = 0 where id = :id;

if (row_count = 0) then

insert into Figures (id, Nunber) values (:id, 0);

Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is1if adatarow wasretrieved and O otherwise.
* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

» After aFETCH from a cursor, RON COUNT is 1 if a datarow was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is O after any type of SELECT statement.

Note

ROW_CQOUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or EX-
ECUTE PROCEDURE command.

SQLCODE
Availablein: PSQL
Addedin: 1.5

Description: In a WHEN SQLCODE handling block, the SQLCODE context variable contains the current SQL
error code. The same istrue in aWHEN ANY block if its execution was triggered by an SQL error; otherwise
it contains 0. SQLCODE isalso 0 in WHEN GDSCODE and WHEN EXCEPTION handlers, as well as everywhere
elsein PSQL.

Type: INTEGER

110

Context variables

Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se
Msg = ' Sonet hi ng bad happened!';
exception ex_custom Msg;
end

UPDATI NG

Availablein: PSQL
Added in: 1.5

Description: Availablein triggers only, UPDATI NGindicates if the trigger fired because of an UPDATE opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

111

Chapter 10

Operators and predicates

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like “A <> NULL”,“B + NULL” or “NULL < ANY(...)” would be rejected by the parser.
Now they are alowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of a field or variable by testing with “= NULL” or “<>
NULL”. Alwaysuse“l S [NOT] NULL".

Predicates. The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (string concatenator)

Availablein: DSQL, ESQL, PSQL

Overflow checking

Changedin: 1.0, 1.5

Description: In Firebird versions 1.0.x, an error would be raised if, based on the declared string lengths, there
was apossibility that a concatenation result would exceed the maximum string length of 32767 bytes. In Firebird
1.5 and above, the error isonly raised if the actual outcome exceeds 32767 bytes.

ALL

Availablein: DSQL, ESQL, PSQL

112

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

NULL literals allowed

Changedin: 2.0

Description: The ALL predicate now allowsaNULL asthetest value. Noticethat thisbringsno practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is =", the predicate will not returnt r ue, but NULL.

UNION as subselect

Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, aNULL test value will not be considered equal to a NULL in the subquery result
Set.

UNION as subselect

Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

113

Operators and predicates

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT
IN (..., NULL, ..., ...)" will not returnf al se.

UNION as subselect
Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean
Syntax:

opl IS [NOT] DI STI NCT FROM op2
Examples:

sel ect id, nane, teacher from courses
where start_day is not distinct fromend_day

if (New. Job is distinct fromd d. Job)
then post_event 'job_changed'

IS[NOT] DISTINCT FROM alwaysreturnst r ue or f al se, never NULL (unknown). The"=" and*<>" operators,
by contrast, return NULL if one or both operands are NULL. See a so the table below.

Table 10.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand char- Resultswith the different operators
acteristics
= NOT DISTINCT <> DISTINCT
Same vaue true true fal se fal se
Different values fal se fal se true true
Both NULL NULL true NULL fal se
One NULL NULL fal se NULL true

114

Operators and predicates

NEXT VALUE FOR

Availablein: DSQL, PSQL
Added in: 2.0
Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.
Syntax:
NEXT VALUE FOR sequence- nane
Example:

new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SOME

See ANY

115

Chapter 11

Aggregate functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group isempty), NULL is returned.

Result type: BLOB
Syntax:
LI ST ([ALL | DI STINCT] expression [, separator])

e ALL (the default) resultsin all non-NULL values to be listed. With DISTINCT, duplicates are re-
moved.

» Theoptional separ at or argument may be astring literal, a parameter or avariable.
» Date/time and numerical arguments are implicitly converted to strings before concatenation.
» Theresult isatext BLOB, except when the argument isa BLOB of another subtype.

» Theordering of the list valuesis undefined.

116

Chapter 12

Internal functions

ABS()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the absolute value of the argument.
Result type: Numerical

Syntax:

ABS (numnber)

Important

If the external function ABS is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()
Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the arc cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
ACCS (nunber)

e Theresultisan anglein therange [0, #].

 If theargument is outside the range [-1, 1], NaN is returned.

117

Internal functions

Important

If the external function ACCS is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ASCII_CHAR()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII character corresponding to the number passed in the argument.
Result type: [VAR]CHAR(1) CHARACTER SET NONE
Syntax:
ASCl | _CHAR (<code>)

<code> ::= an integer in the range [O0..255]

I mportant

 If the external function ASClI | _ CHAR is declared in your database, it will obfuscate the internal function.
To make the internal function available, DROP or ALTER the external function (UDF).

e |f you are used to the behaviour of the ASCI | _ CHAR UDF, which returns an empty string if the argument
is 0, please notice that the internal function correctly returns a character with ASCII code O here.

ASCIl_VAL()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII code of the character passed in.
Result type: SMALLINT
Syntax:

ASCI | _VAL (<ch>)

<ch> ::= a single-byte character or a string

 If the argument is a string with more than one character, the ASCII code of the first character is
returned.

118

Internal functions

 If theargument is an empty string, O is returned.

 |If the (first character of the) argument is a multi-byte character, an error is thrown.

Important

If the external function ASCI | _VAL is declared in your database, it will obfuscate the internal function. To
make the internal function available, DROP or ALTER the external function (UDF).

ASIN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returnsthe arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

ASI N (nunber)

* Theresultisan anglein the range [-#/2, #/2].

» |f theargument is outside the range [-1, 1], NaN is returned.

I mportant

If the external function ASI Nis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION

Syntax:
ATAN (nunber)

» Theresult isan angle in the range <-#/2, #/2>.

119

Internal functions

Important

If the external function ATANis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN2()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.
Result type: DOUBLE PRECISION
Syntax:

ATAN2 (nunil, nunR)

» Theresultisan angle in therange [-#, #].

e If nun® isnegative, theresultis#if nuntl is0, and -# if nuntl is-0.

» Theresult ismeaninglessif both nuni and nun? are 0.

Important

If the external function ATANZ is declared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the externa function (UDF).

Notes:

» A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the pos-

itive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0)
is undefined.

BIN_AND()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the result of the bitwise AND operation on the argument(s).

Result type: INTEGER or BIGINT

120

Internal functions

Syntax:

BI N_AND (number [, nunber ...])

I mportant

If the external function BI N_AND s declared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_OR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise OR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BIN OR (nunber [, nunber ...])

I mportant

If the external function BI N_ORis declared in your database, it will obfuscate the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

BIN_SHL()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a-2"b.
Result type: BIGINT
Syntax:

BI N SHL (nunmber, shift)

BIN_SHR()

Availablein: DSQL, PSQL

121

Internal functions

Added in: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.

Result type: BIGINT

Syntax:
BI N_SHR (nunber, shift)

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the result of the bitwise XOR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N_XOR (number [, nunber ...])

Important

If the external function BI N_XORisdeclared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIT_LENGTH()

Availablein: DSQL, PSQL

Added in: 2.0

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Result type: INTEGER

Syntax:

BI T_LENGTH (str)

122

Internal functions

Note

With arguments of type CHAR, this function usually takes the entire formal string length (e.g. the declared
length of afield or variable) into account. In such cases, TRIM the argument first if you want to obtain the
“real” bit length, without counting the trailing spaces.

Examples:

select bit_length('Hello!') from rdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'Gul di!') fromrdb$dat abase
-- returns 64: U and B take up one byte each in |SC8859 1

sel ect bit_length

(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from r db$dat abase

-- returns 80: U and B take up two bytes each in UTF8

sel ect bit_length
(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

CAST()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changed in: 2.0

Description: CAST converts an expression to the desired datatype. If the conversion is not possible, an error
isthrown.

Result type: User-chosen.
Syntax:

CAST (expression AS dat atype)
Shorthand syntax:

Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:

dat atype 'date/tinestring'

This syntax was already availablein InterBase, but was never properly documented.

123

Internal functions

Examples:

A full-syntax cast:
select cast ('12' || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'Ad’
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'dd
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today'

7 from rdb$dat abase

The following table shows the type conversions possible with CAST.

Table 12.1. Possible CASTs

From To
Numeric types Numeric types
[VAR]CHAR
[VAR]CHAR [VAR]CHAR
Numeric types
DATE
TIME
TIMESTAMP
DATE [VAR]CHAR
TIME TIMESTAMP
TIMESTAMP [VAR]CHAR
DATE
TIME

Keep in mind that sometimes information gets lost, for instance when you cast a TIMESTAMP to a DATE.
Also, the fact that types are CAST-compatible is in itself no guarantee that a conversion will succeed.
“CAST (123456789 as SMALLINT)” will definitely result in an error, aswill “ CAST('Judgement Day' asDATE)".

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

This givesyou control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast — shorthand casts are not supported.

124

Internal functions

CEIL(), CEILING()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEI L[ING (nunber)

Important

If the external function CEl LI NGis declared in your database, it will obfuscate the internal function CEILING
(but not CEIL). To make the internal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTHY()

Availablein: DSQL, PSQL

Added in: 2.0

Description: Givesthe length in characters of the input string.
Result type: INTEGER

Syntax:

CHAR_LENGTH (str)
CHARACTER_LENGTH (str)

Note

With arguments of type CHAR, this function usually returns the formal string length (e.g. the declared length
of afield or variable). In such cases, TRIM the argument first if you want to obtain the “real” length, without
counting the trailing spaces.

Examples:

sel ect char_length('Hello!') from rdb$dat abase
-- returns 6

sel ect char _length(_iso08859 1 'GiaR di!') from rdb$dat abase
-- returns 8

125

Internal functions

sel ect char_l ength
(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from r db$dat abase
-- returns 8; the fact that U and B take up two bytes each is irrel evant

sel ect char_l ength

(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase

-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, NULL is returned.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N ckname, FirstNanme, "M./Ms.") || " ' || LastName

as Ful | Namre
from Per sons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that tooisNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it triesto use the avail able data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the * nvl external
functions.

COS()

Availablein: DSQL, PSQL

126

Internal functions

Added in: 2.1

Description: Returns an angle's cosine. The argument should be given in radians.
Result type: DOUBLE PRECISION

Syntax:
COS (angl e)

e Any non-NULL result is— obviously — in therange [-1, 1].

Important

If the external function COS is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:

CCSH (number)

* Any non-NULL result isin therange [1, INF].

I mportant

If the external function COSH is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COT()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns an angle's cotangent. The argument should be given in radians.

Result type: DOUBLE PRECISION

127

Internal functions

Syntax:

COr (angl e)

Important

If the external function COT is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

DATEADD()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Adds the specified number of years, months, days, hours, minutes, seconds or milliseconds to a
date/time value.

Result type: DATE, TIME or TIMESTAMP
Syntax:
DATEADD (<ar gs>)

<ar gs> ;.= <anount> <unit> TO <dateti nme>
| <unit> <anount>, <datetinme>

<anount >
<unit>

an i nteger expression (negative to subtract)
YEAR | MONTH | DAY

| HOUR | M NUTE | SECOND | M LLI SECOND
a DATE, TIME or TI MESTAMP expression

<dat et i me>

» Theresult typeis determined by the third argument.

» With DATE arguments, only YEAR, MONTH and DAY can be used.

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current_date)

dateadd (-6 hour to current_tine)

dat eadd (nonth, 9, DateCf Conception)

dateadd (minute, 90, tine 'now)
dat eadd (? year to date '11-Sep-1973')

DATEDIFF()

Availablein: DSQL, PSQL

128

Internal functions

Added in: 2.1

Description: Returns the number of years, months, days, hours, minutes, seconds or milliseconds elapsed be-
tween two date/time values.

Result type: BIGINT
Syntax:

DATEDI FF (<args>)

<ar gs> = <unit> FROM <nonent 1> TO <nonent 2>
| <unit> <nonentl>, <nonent2>
<uni t> 1= YEAR | MONTH | DAY
| HOUR| MNUTE | SECOND | M LLI SECOND
<nmonent N> = a DATE, TIME or TIMESTAMP expression

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

* With DATE arguments, only YEAR, MONTH and DAY can be used.

* With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Computation:
» DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As aresult,

- “datediff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
“datedi ff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

* It doeslook, however, at al the bigger units. So:

“datedi ff (day, date '26-Jun-1908', date '11-Sep-1973")" returns23818
» A negative return value indicates that nonent 2 lies before nronent 1.
Examples:

datedi ff (hour fromcurrent _tinestanp to tinestanp '12-Jun-2059 06: 00')
datedi ff (mnute fromtime '0:00" to current_tine)

datedi ff (nmonth, current_date, date '1-1-1900')

datedi ff (day fromcurrent _date to cast(? as date))

DECODE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed

129

Internal functions

after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
is returned.

Result type: Varies

Syntax:

DECODE (<t est-expr >,
<expr>, result
[, <expr>, result ...]
[, defaultresult])

The equivaent CASE construct:

CASE <t est - expr>
WHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

Caution

Matching is done with the “=" operator, so if <t est - expr > isNULL, it won't match any of the
<expr >s, not even those that are NULL.

Example:
sel ect nane,
age,
decode(upper (sex),
'M, 'Male',
"F, 'Fenale',
" Unknown'),
religion
from peopl e

See also: CASE, Simple CASE

EXP()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the natural exponential, e"™¢"

Result type: DOUBLE PRECISION

Syntax:
EXP (nunber)
See also: LN()

130

Internal functions

EXTRACT()

Availablein: DSQL, ESQL, PSQL
Added in: IB 6
Changedin: 2.1

Description: Extracts and returns an el ement from aDATE, TIME or TIMESTAMP expression. Thisfunction was
already added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or DECIMAL(6,4)
Syntax:

EXTRACT (<part> FROM <dat eti me>)

<part> = YEAR | MONTH | WEEK

| DAY | WEEKDAY | YEARDAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetinme> ::= a DATE, TIME or TI MESTAMP expression

Thereturned datatypeis DECIMAL (6,4) for the SECOND part and SMALLINT for all others. Therangesare shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from aTIME), an error occurs.

Table 12.2. Rangesfor EXTRACT results

Part Range Comment
YEAR 1-9999

MONTH 1-12

WEEK 1-53

DAY 1-31

WEEKDAY 0-6 0 = Sunday
YEARDAY 0-365 0= January 1
HOUR 0-23

MINUTE 0-59

SECOND 0.0000-59.9990

MILLISECOND 0-999 buggy in2.1,21.1

131

Internal functions

MILLISECOND

Added in: 2.1 (with bug)

Fixedin: 2.1.2

Description: Firebird 2.1 and up support extraction of themillisecond fromaTIME or TIMESTAMP. The datatype
returned is an INTEGER.

Bug alert

MILLISECOND extraction isbroken in Firebird 2.1 and 2.1.1: the number returned includes SECOND* 1000, so
if thetimeise.g. 20:48:17.637, the MILLISECOND value is 17637 while it should be 637. This bug has been
fixed in version 2.1.2.

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Added in:

21

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number from aDATE or TIMESTAMP.

1SO-8601

weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a

majority (at least 4) of its daysin the new year. The first 1-3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1-3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008 liesin week 1 of 2009,
so“extract (week fromdate ' 30 Dec 2008') " returns 1. However, extracting Y EAR always gives
the calendar year, which is 2008. In this case, WEEK and YEAR are at odds with each other. The same happens
when thefirst days of January belong to the last week of the previous year.

Please aso notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas 1SO-8601
specifies 7.

FLOOR()

Availablein: DSQL, PSQL

Added in:

21

132

Internal functions

Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (nunber)

Important

If the external function FLOOR is declared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

See also: CEIL() / CEILING()

GEN_ID()

Availablein: DSQL, ESQL, PSQL
Added in: IB

Description: Increments agenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

GEN_I D (generator-nanme, <step>)

<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step valueslower than 1 may compromise
your datasintegrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Availablein: DSQL, PSQL

133

Internal functions

Added in: 2.1

Description: Returns a universally unique ID as a 16-byte character string.

Result type: CHAR(16) CHARACTER SET OCTETS
Syntax:

GEN_UUI D ()

HASH()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns a hash value for the input string.
Result type: BIGINT

Syntax:

HASH (string)

1HF()
Availablein: DSQL, PSQL
Added in: 2.0

Description: 11F takesthreearguments. If thefirst evaluatestot r ue, the second argument isreturned; otherwise
thethird is returned.

Result type: Depends on input.

Syntax:

Il F (<condition> ResultT, ResultF)

<condition> ::= A bool ean expression.
Example:
select iif(sex ='M, 'Sir', '"Madam) from Custoners

IIF(Cond, Resul t 1, Resul t 2) isashortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can also compare lIF to the ternary “? : " operator in C-like languages.

134

Internal functions

LEFT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR
Syntax:
LEFT (string, |ength)
* TheresultisaVARCHAR(n) with n the length of the input string.

» |f thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, €tc.

See also: RIGHT()

LNQ

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
LN (nunber)

e Anerrorisraised if the argument is negative or O.

I mportant

If the external function LN is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

135

Internal functions

LOG()
Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the x-based logarithm of y.
Result type: DOUBLE PRECISION
Syntax:

LOG (x, Y)

» If x isnegative or y is negative, the result is always NaN.

If x ispositiveandy isO, +/-1 NF is returned, depending on x.
e Bug: If x =1andy >= 0 (but not 1), +/-1 NF isreturned.

 Bug: Ifx=0andy >0, theresultisO.

I mportant

If the external function LOGis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()
Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the 10-based logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LOGLO (nunber)

» If theargument is O, -I NF isreturned. If the argument is negative, NaNis returned.

I mportant

If the external function LOGLO0 is declared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

136

Internal functions

LOWER()

Availablein: DSQL, ESQL, PSQL
Added in: 2.0

Description: Returns the lower-case equivalent of the input string. This function also correctly lowercases non-
ASCII characters, even if the default (binary) collation is used. The character set must be appropriate though:
with ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged.

Result type: VAR(CHAR)

Syntax:

LOAER (str)

Important

If the external function LOVER is declared in your database, it will obfuscate the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

Example:

sel ect Sheriff from Towns
where | ower (Name) = 'cooper''s valley'

See also; UPPER

LPAD()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR(32765)
Syntax:
LPAD (str, endlen [, padstr])

o If padstr ispresent and equals' ' (empty string), ho padding takes place.

137

Internal functions

If endl en islessthan the current string length, the string istruncatedtoendl en, evenif padst r
is'".

I mportant

internal function available, DROP or ALTER the external function (UDF).

If the external function LPAD is declared in your database, it will obfuscate the internal function. To make the

Tip

combination with other output columns, lead to a “block size exceeds implementation restriction” error.

It is generally wise to CAST the result to a smaller (VAR)CHAR. The default result length of 32765 may, in

Examples:
I pad (' Hello', 12) -- returns ' Hel | o'
Ipad ('Hello', 12, '-") -- returns '------- Hel | o'
lpad ('Hello', 12, '") -- returns '"Hello
Ipad (' Hello', 12, 'abc') -- returns 'abcabcaHel |l o'
lpad (' Hello', 12, 'abcdefghij') -- returns 'abcdefgHel |l o'
I pad ('Hello', 2) -- returns 'He'
lpad ('Hello', 2, '-") -- returns ' He'
Ipad (‘Hello', 2, '") -- returns 'He'

See also: RPAD()

MAXVALUE()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the maximum value from alist of numerical, string, or date/time expressions.
Result type: Varies
Syntax:
MAXVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Availablein: DSQL, PSQL

138

Internal functions

Added in: 2.1
Description: Returns the minimum value from alist of numerical, string, or date/time expressions.
Result type: Varies
Syntax:
M NVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

See also: MAXVALUE()

MOD()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the remainder of an integer division.
Result type: INTEGER or BIGINT
Syntax:
MDD (a, b)

» Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5" gives 2 (8
mod 3), not 0.

I mportant

If the external function MOD is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

NULLIF()

Availablein: DSQL, PSQL
Added in: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.

139

Internal functions

Syntax:
NULLI F (<expl>, <exp2>)
Example:
select avg(nullif(Wight, -1)) from Fat Peopl e
This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,

since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.

OCTET_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function usually takes the entire formal string length (e.g. the declared
length of afield or variable) into account. In such cases, TRIM the argument first if you want to obtain the
“rea” byte length, without counting the trailing spaces.

Result type: INTEGER
Syntax:

OCTET_LENGTH (str)
Examples:

select octet length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet length(_iso8859 1 "G uR di!') fromrdb$dat abase
-- returns 8: U and B take up one byte each in | S08859 1

sel ect octet_length

(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase

140

Internal functions

-- returns 10: 0 and B take up two bytes each in UTF8

sel ect octet_length
(cast (_iso08859 1 "G uB di!'" as char(24) character set utf8))
from rdb$dat abase
-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH

OVERLAY()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Replaces part of astring with another string. By default, the number of charactersremoved from the
host string equals the length of the replacement string. With the optional fourth argument, the user can specify
adifferent number of characters to be removed.

Result type: VARCHAR
Syntax:
OVERLAY (string PLACI NG repl acement FROM pos [FOR | engt h])

* Theresult isaVARCHAR(n) with n the sum of the lengths of st ri ng and r epl acenent .
» Asusua in SQL string functions, pos is 1-based.
» If posisbeyondtheend of st ri ng, repl acenent isplaced directly after st ri ng.

 If the number of characters from pos to the end of stri ng is smaler than the length of r e-
pl acenent (or than the | engt h argument, if present), st ri ng istruncated a pos and r e-
pl acenent placed after it.

» Theeffect of a“FOR 0" clauseisthat r epl acenent issimply inserted into st ri ng.

» |If pos or | engt h is not awhole number, bankers rounding (round-to-even) is applied, i.e. 0.5
becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello' fromb5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello' from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello'" from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from2 for 0) -- r. 'GHell ooodbye'
overlay (' Goodbye' placing 'Hello' from2 for 3) -- r. 'CHel |l obye'
overlay (' Goodbye' placing 'Hello' from2 for 6) --r. "CHello'
overlay (' Goodbye' placing 'Hello' from2 for 9) --r. 'CGHello
overlay (' Goodbye' placing '' from 4) -- returns ' Goodbye'

141

Internal functions

overlay (' Goodbye' placing '' from4 for 3) -- returns ' Gooe'
overlay (' CGoodbye' placing '' from4 for 20) -- returns 'Goo'

overlay ('' placing 'Hello' from 4) -- returns 'Hello
overlay ('' placing 'Hello' from4 for 0) -- returns 'Hello
overlay ('' placing '"Hello' from4 for 20) -- returns 'Hello

See also: REPLACE()

PI1()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION

Syntax:

Pl ()

Important

If the external function PI is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

POSITION()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the position of the first occurrence of a substring in a host string. With the optional third
argument, the search starts at a given offset, disregarding any matches that may occur earlier in the string. If
no match isfound, the result is 0.

Result type: INTEGER

Syntax:

POSI TI ON (<ar gs>)

<args> ::= substr IN string
| substr, string [, startpos]

» The optional third argument is only supported in the second syntax (comma syntax).

142

Internal functions

Examples:

position
position
position
position
position
position

AN AN AN AN S

' be'
' be'
' be',
' be'
' be',
' be'

in'To be or not to be')

"To be or
'"To be or
"To be or
'"To be or
in"'Al as,

Availablein: DSQL, PSQL

Added in: 2.1

not
not
not
not
poor

Description: Returns x to the y'th power.

Result type: DOUBLE PRECISION

Syntax:

PONER (x,

y)

» If x negative, an error is raised.

to be")

to be', 4)
to be', 8)
to be', 18)
Yorick!")

POWER()

returns
returns
returns
returns
returns
returns

COoOrh~h~bh

Important

If the external function POAER is declared in your database as power instead of the default dPower , it will
obfuscate the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

Availablein: DSQL, PSQL

Added in: 2.1

RAND()

Description: Returns arandom number between 0 and 1.

Result type: DOUBLE PRECISION

Syntax:

RAND ()

I mportant

If the external function RAND is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

143

Internal functions

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SSET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:
RDB$GET _CONTEXT (' <namespace>', ' <varnane>')

<namespace> ::= SYSTEM | USER SESSI ON | USER TRANSACTI ON
<var nane> ::= A case-sensitive string of nmax. 80 characters

The namespaces. The USER_SESSION and USER_TRANSACTION namespaces areinitially empty. The user can

create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
SY STEM namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 12.3. Context variablesin the SY STEM namespace

DB_NANME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

NETWORK _PROTOCCL The protocol used for the connection: ' TCPv4' ,' WNET' ,' XNET'" or NULL.

CLI ENT_ADDRESS For TCPv4, thisisthe IP address. For XNET, the local process ID. For all other
protocolsthis variable is NULL.

CURRENT_USER Same as general CURRENT _USER variable.

CURRENT_ROLE Same as general CURRENT _RCLE variable.

SESSI ON_| D Same as general CURRENT _CONNECT! ON variable.

TRANSACTI ONLI D Same as general CURRENT _TRANSACTI ON variable.

| SOLATI ON_LEVEL The isolation level of the current transaction: ' READ COVM TTED , ' SNAP-
SHOT' or' CONSI STENCY' .

Return valuesand error behaviour: If the polled variable existsin the given namespace, itsvaluewill bereturned
as astring of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable

144

Internal functions

in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NULL isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.
Examples:

sel ect rdb$get _context (' SYSTEM, 'DB_NAME') from rdb$dat abase

New. User Addr = rdb$get context (' SYSTEM, ' CLI ENT_ADDRESS');

insert into MyTabl e (TestField)
val ues (rdb$get context (' USER SESSION , 'MVar'))

See also: RDB$SET_CONTEXT()

RDB$SET _CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are always present — the user doesn't have to do anything to make them
avallable.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER
Syntax:

RDB$SET_CONTEXT (' <nanmespace>', '<varnane>', <value> | NULL)

<nanespace> = USER SESSI ON | USER TRANSACTI ON
<var nane> = A case-sensitive string of nmax. 80 characters
<val ue> = A value of any type, as long as it's castable

to a VARCHAR(255)

The namespaces: The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can
create and set variablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variablesin USER_TRANSACTION only exist inthe
transaction in which they have been set. When the transaction ends, the context and all the variables defined
init are destroyed.

Return values and error behaviour: The function returns 1 if the variable already existed before the call and 0
if it didn't. To remove avariable from a context, set it to NULL. If the given namespace doesn't exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-NULL strings.

145

Internal functions

Examples:
sel ect rdb$set context (' USER SESSI ON , 'MyVar', 493) from rdb$dat abase
rdb$set _context (' USER_SESSI ON , ' RecordsFound', RecCounter);

sel ect rdb$set context (' USER_TRANSACTI ON' , ' Savepoints', 'Yes')
from rdb$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

e All USER_ TRANSACTION variableswill surviveaROLLBACK RETAIN or ROLLBACK TO SAVEPOINT un-
altered, no matter when in the transaction they were set.

* DuetoitsUDF-likenature, RDB$SET_CONTEXT can—in PSQL only —be called like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Replaces all occurrences of a substring in a string.
Result type: VARCHAR
Syntax:
REPLACE (str, find, repl)

e Theresult isaVARCHAR(n) with n calculated from the lengths of st r, fi nd andr epl in such away
that even the maximum possible number of replacements won't overflow the field.

» Iffindistheempty string, st r isreturned unchanged.
* Ifrepl istheempty string, any occurrences of f i nd are deleted fromstr .

» If any argument is NULL, the result is always NULL, even if nothing would have been replaced.

Examples:
replace ('Billy Wlder', "il', 'oo0g") -- returns ' Boogly Wogder'
replace ('Billy Wlder', "il"', '") -- returns 'Bly Wler'
replace ('Billy Wlder', "il', null) -- returns NULL
replace ('Billy Wlder', 'xyz', null) -- returns NULL (!)
replace ("Billy Wlder', "xyz', 'abc') -- returns 'Billy Wlder'
replace ("Billy Wlder', "', "abc') -- returns 'Billy WIder'

See also: OVERLAY()

146

Internal functions

REVERSE()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns a string backwards.
Result type: VARCHAR

Syntax:

REVERSE (str)

Examples:
reverse ('spoonful') -- returns 'l ufnoops’
reverse (‘Was it a cat | saw?') -- returns '?was | tac a ti saW
Tip

This function comesin very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_ennil on people
computed by (reverse(emnail));

sel ect * from peopl e
where reverse(enmnil) starting with reverse('.br');

RIGHT()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe rightmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR
Syntax:
RI GHT (string, |ength)
* Theresult isaVARCHAR(n) with n the length of the input string.
» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

147

Internal functions

Important

If the external function RI GHT is declared in your database asr i ght instead of the default sri ght , it will
obfuscate the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

See also: LEFT()

ROUND()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:
ROUND (<nunber> [, <scal e>])
<nunber> ::= a nunerical expression
<scal e> = an integer specifying the nunber of decinal places
toward whi ch shoul d be rounded, e.g.:
2 for rounding to the nearest multiple of 0.01
1 for rounding to the nearest nmultiple of 0.1
0 for rounding to the nearest whol e nunber

-1 for rounding to the nearest multiple of 10
-2 for rounding to the nearest nultiple of 100

Notes:
» |fthescal e argument is present, the result usually has the same scale as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)
- ROUND(8341.7, -3) returns 8000.0 (not 8000)
- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scaleis O:

- ROUND(45.1212) returns 45

I mportant

« If theexternal function ROUNDis declared in your database, it will obfuscate theinternal function. To make
the internal function available, DROP or ALTER the external function (UDF).

e |f you are used to the behaviour of the external function ROUND, please notice that the internal function
always rounds halves away from zero, i.e. downward for negative numbers.

148

Internal functions

RPAD()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR(32765)
Syntax:
RPAD (str, endlen [, padstr])
» If padstr ispresent and equals' ' (empty string), no padding takes place.

» If endl enislessthanthecurrent string length, the stringistruncatedtoendl| en, evenif padstr
is'".

Important

If the external function RPAD is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Tip

It is generaly wise to CAST the result to a smaller (VAR)CHAR. The default result length of 32765 may, in
combination with other output columns, lead to a “block size exceeds implementation restriction” error.

Examples:
rpad ('Hello', 12) -- returns 'Hello '
rpad (‘Hello', 12, '-") -- returns 'Hello------- '
rpad (‘Hello', 12, '") -- returns 'Hello
rpad ('Hello', 12, 'abc') -- returns ' Hel |l oabcabca'
rpad ('Hello', 12, 'abcdefghij') -- returns 'Hell oabcdefg
rpad ('Hello', 2) -- returns ' He'
rpad (‘Hello', 2, '-") -- returns 'He'
rpad (‘Hello', 2, '") -- returns ' He'

Seealso: LPAD()

SIGN()

Availablein: DSQL, PSQL

Added in: 2.1

149

Internal functions

Description: Returns the sign of the argument: -1, O or 1.
Result type: SMALLINT

Syntax:

SI GN (nunber)

Important

If the external function SI GNis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns an angle's sine. The argument should be given in radians.

Result type: DOUBLE PRECISION
Syntax:
SIN (angl e)

* Any non-NULL result is— obviously — intherange [-1, 1].

| mportant

If the external function SI Nis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SINH()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

SI NH (nunber)

150

Internal functions

Important

If the external function SI NHis declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the square root of the argument.

Result type: DOUBLE PRECISION
Syntax:
SQRT (nunber)

I mportant

If the external function SQRT is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SUBSTRING()

Available in: DSQL, PSQL
Addedin: 1.0
Changedin: 2.0

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Result type: CHAR(n)
Syntax:
SUBSTRI NG (<str> FROM startpos [FOR | ength])
<str> ::= any expression evaluating to a string

SUBSTRING returns the stream of bytes starting at byte position st ar t pos (the first byte position being 1).
Without the FOR argument, it returns al the remaining bytes in the string. With FOR, it returns| engt h bytes
or the remainder of the string, whichever is shorter.

InFirebird 1.x, st art pos and| engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

151

Internal functions

The width of the result field is always equal to the length of st r, regardless of st ar t pos and | engt h. So,
substring(' pi nhead' from 4 for 2) will return aCHAR(7) containing the string ' he' .

If any argument is NULL, the result isNULL. A bug in Firebird 2.0 which caused the function to return “false
emptystrings” if st ar t pos or | engt h was NULL, has been fixed.

SUBSTRING can be used with:

* Any string or (var)char argument, regardless of its character set;

* Subtype O (binary) BLOBS;

* Subtype 1 (text) BLOBS, if the character set has 1 byte per character.

SUBSTRING can not be used with text BLOBSs that have an underlying multi-byte character set.
Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongName from1l for 3) from LongNanes

TAN()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an angle's tangent. The argument should be given in radians.
Result type: DOUBLE PRECISION

Syntax:

TAN (angl e)

Important

If the external function TAN is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TANH()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the hyperbolic tangent of the argument.

Result type: DOUBLE PRECISION

152

Internal functions

Syntax:
TANH (nunber)

* Dueto rounding, any non-NULL result isin the range [-1, 1] (mathematically, it's <-1, 1>).

I mportant

If the external function TANH is declared in your database, it will obfuscate the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()
Availablein: DSQL, PSQL
Added in: 2.0

Description: Removes leading and/or trailing blanks (or optionally other characters) from the input string.
Result type: VAR(CHAR)

Syntax:

TRIM ([<adj ust>] str)

<adj ust > = {[<where>] [<what>]} FROM
<wher e> = BOTH | LEADING | TRAILING /* default is BOTH */
<what > ::= The substring to be trimred (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples:
select trim (' Waste no space ') from rdb$dat abase

-- returns 'Waste no space'

select trim(leading from' \Waste no space ') from rdb$dat abase
-- returns 'Waste no space '

select trim(leading '.' from' Waste no space ') from rdb$dat abase
-- returns ' Waste no space '
select trim(trailing '!" from'Help!'!!!") fromrdb$dat abase

-- returns 'Help'

select trim('la" from'lalala | love you Ella') fromrdb$database
-- returns ' | love you HE'

select trim('la" from'Lalala | love you Ella') fromrdb$database
-- returns 'Lalala | |ove you E'

153

Internal functions

TRUNC()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the integer part of a number. With the optional scal e argument, the number can be
truncated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:

TRUNC (<nunber> [, <scal e>])

<nunber > = a numerical expression
<scal e> ;.= an integer specifying the nunber of decinmal places
toward whi ch should be truncated, e.g.
2 for truncating to a multiple of 0.01
1 for truncating to a nultiple of 0.1
0 for truncating to a whol e nunber
-1 for truncating to a multiple of 10
-2 for truncating to a multiple of 100

Notes:
» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleisO:

- TRUNC(-163.41) returns -163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC aways truncates toward zero, i.e. upward for negative numbers.

UPPER()

Availablein: DSQL, ESQL, PSQL
Added in: 1B

Changedin: 2.0

154

Internal functions

Description: Returns the upper-case equivalent of the input string. Since Firebird 2 this function also correctly
uppercases non-ASCII characters, even if the default (binary) collation is used. The character set must be ap-
propriate though: with ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the
entire string is returned unchanged.

Result type: VAR(CHAR)
Syntax:
UPPER (str)
Examples:
sel ect upper(_iso8859 1 'Débacle')
from r db$dat abase
-- returns 'DEBACLE' (before Firebird 2.0: 'DéBACLE')
sel ect upper(_iso8859 1 'Débéacle' collate fr_fr)
from rdb$dat abase

-- returns ' DEBACLE , followi ng French uppercasing rul es

See also: LOWER

155

Chapter 13

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two externa function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can also create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - useinternal ABS()
Description: Returns the absolute value of the argument.
Result type: DOUBLE PRECISION
Syntax:
abs (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON abs
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_abs' MODULE_NAME 'ib_udf'

aCos

Library: ib_udf
Addedin: IB

Deprecated in: 2.1 - use internal ACOS()

156

External functions (UDFs)

Description: Returns the arc cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
acos (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON acos
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_acos' MODULE_NAME 'ib_udf’

addDay

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTANP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addhour (atinmestanp, nunber)

157

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'

addM | I 1 Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addmi | I i second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT 'addM | 1i Second" MODULE_NAME ' f budf"'

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nute

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

158

External functions (UDFs)

addMont h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addnmont h (ati nestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE_NAME ' f budf"’

addSecond

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAVP, | NT

RETURNS Tl MESTAWP
ENTRY_PO NT ' addSecond’ MODULE_NAME ' f budf '

addWeek

Library: fbudf

159

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addweek (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAMP, | NT
RETURNS Tl MESTAWP
ENTRY_PO NT ' addWeek' MODULE_NAME ' f budf'

addYear

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addyear (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear
TI MESTAMP, | NT
RETURNS Tl MESTAMP
ENTRY_PO NT 'addYear' MODULE NAME ' f budf'

asci i _char

Library: ib_udf
Changedin: 1.0, 2.0
Deprecated in: 2.1 - useinternal ASCII_CHAR()

Description: Returns the ASCII character corresponding to the integer value passed in.

160

External functions (UDFs)

Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:
DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT ' | B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

TheNULL after INTEGER isan optional addition that became availablein Firebird 2. When declared
withtheNULL keyword, theenginewill passaNULL argument unchanged to thefunction. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:
e ascii_char (0) returnsan empty string in all versions, not a character with ASCI| value 0.

» Before Firebird 2.0, the result type was CHAR(1).

asci i _val

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - useinternal ASCII_VAL()
Description: Returns the ASCII code of the character passed in.
Result type: INTEGER
Syntax:

ascii_val (ch)
Declaration:

DECLARE EXTERNAL FUNCTI ON asci i _val

CHAR(1)

RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' I B_UDF_ascii_val' MODULE_NAME 'ib_udf'

161

External functions (UDFs)

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. Theinternal function ASCII_VAL returns 0 in this case.

asin

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - use internal ASIN()
Description: Returns the arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

asi n (number)
Declaration:

DECLARE EXTERNAL FUNCTI ON asi n
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_asin' MODULE_NAME ' i b_udf’

at an

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - useinternal ATAN()
Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
atan (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an

162

External functions (UDFs)

DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan' MODULE_NAME 'ib_udf'

at an2

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - useinternal ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION
Syntax:

atan2 (nunil, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an2
DOUBLE PRECI SI ON, DOUBLE PRECI S| ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_atan2' MODULE_NAME 'ib_udf’

bi n_and

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - use internal BIN_AND()
Description: Returns the bitwise AND result of the arguments.
Result type: INTEGER
Syntax:

bi n_and (nunil, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_and

163

External functions (UDFs)

| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' | B_UDF_bi n_and' MODULE_NAME 'ib_udf"

bi n_or

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal BIN_OR()
Description: Returns the bitwise OR result of the arguments.
Result type: INTEGER
Syntax:

bi n_or (nunl, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_or
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' I B_UDF_bin_or' MODULE_NAME 'ib_udf

bi n_xor
Library: ib_udf
Added in: IB
Deprecated in: 2.1 - useinternal BIN_XOR()
Description: Returns the bitwise XOR result of the arguments.
Result type: INTEGER
Syntax:
bi n_xor (nunl, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_xor
I NTEGER, | NTEGER

164

External functions (UDFs)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bi n_xor' MODULE_NAME 'ib_udf'

ceiling

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - useinternal CEIL() / CEILING()
Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

ceiling (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cei | i ng
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_ceiling’ MODULE_NAME 'ib_udf'

COS

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - use internal COS()
Description: Returns an angle's cosine. The argument should be given in radians.
Result type: DOUBLE PRECISION
Syntax:
cos (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cos
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE

165

External functions (UDFs)

ENTRY_POI NT ' | B_UDF_cos' MODULE_NAME 'ib_udf'

cosh

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal COSH()
Description: Returns the hyperbalic cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
cosh (number)
Declaration:

DECLARE EXTERNAL FUNCTI ON cosh
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cosh' MODULE_NAME 'ib_udf'

cot

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal COT()
Description: Returns an angle's cotangent. The argument should be given in radians.
Result type: DOUBLE PRECISION
Syntax:
cot (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cot
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cot' MODULE_NAME 'ib_udf'

166

External functions (UDFs)

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati nestanp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow
TI MESTAMP,
VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf '

See also: sdow

dpower

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 2.1 — use internal POWER()
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:

dpower (x, y)
Declaration:

DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE _NAME ' f budf'

167

External functions (UDFs)

fl oor

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal FLOOR()
Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:
fl oor (number)
Declaration:

DECLARE EXTERNAL FUNCTI ON f 1 oor
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_fl oor' MODULE_NAME 'ib_udf’

get Exact Ti nest anp

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 2.0 — use the improved CURRENT _TI MESTAMP context variable
Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TI MESTAMP aways had . 0000 in the fractional part of the second. In Firebird 2.0 and
up it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision.
Result type: TIMESTAMP
Syntax:
get exactti mest anp()

Declaration:

DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp
TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti mest anp’ MODULE_NAME ' f budf'

168

External functions (UDFs)

| 64r ound
Seer ound.
| 64t runcat e
Seetruncat e.
| n
Library: ib_udf
Added in: IB

Deprecated in: 2.1 - use internal LN()
Description: Returns the natural logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:

[n (nunber)
Declaration:

DECLARE EXTERNAL FUNCTION | n

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' IB_UDF_I n' MODULE_NAME 'ib_udf'

| og
Library: ib_udf
Added in: IB
Changedin: 1.5

Deprecated in: 2.1 - use internal LOG()

169

External functions (UDFs)

Description: In Firebird 1.5 and up, | og returns the the base-x logarithm of y. In Firebird 1.0.x and InterBase,
it erroneoudly returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x, V)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_| 0og' MODULE_NAME 'ib_udf'

Warning

If any of your pre-1.5 databases uses| og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get

wrong results.
| 0g10
Library: ib_udf
Addedin: IB

Deprecated in: 2.1 - use internal LOG10()
Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:

| 0g10 (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON | 0gl10

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| 0g10' MODULE_NAME 'ib_udf"

| ower

Library: ib_udf

170

External functions (UDFs)

Added in: IB
Changedin: 2.0
Deprecated in: 2.0 — use theinternal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the new, superior internal function LOWER instead. Just dropping the decla-
ration of thel ower UDF should do the trick, unless you gave it an aternative name.

Result type: VARCHAR(Nn)
Syntax:

"LONER' (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON " LOVER'
CSTRI NG(255) NULL
RETURNS CSTRI NG 255) FREE | T
ENTRY_POI NT ' | B_UDF_| ower' MODULE_NAME 'ib_udf"

The above declaration is from the file i b_udf 2. sql . “LOWER”" has been surrounded by dou-
ble-quotes to avoid confusion with the new internal function LOWER.

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichiscorrect. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad
Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Deprecated in: 2.1 —useinternal LPAD()

Description: Returns the input string | eft-padded with padchar suntil endl engt h isreached.

171

External functions (UDFs)

Result type: VARCHAR(N)

Syntax:

| pad (str, endlength, padchar)

Declaration:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG 255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a
NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

When calling this function, make sure endl engt h does not exceed the declared result length.

If endl engt h islessthan st r 'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

A NULL endl engt h istreated asif it were 0.

If padchar isempty, or if padchar isSNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

Before Firebird 2.0, the result type was CHAR(n).
A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf

Changedin: 1.5,1.5.2,2.0

Deprecated in: 2.0 —use TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

172

External functions (UDFs)

Result type: VARCHAR(N)
Syntax (unchanged):
[trim(str)
Declaration;
DECLARE EXTERNAL FUNCTION I trim
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE IT
ENTRY_POI NT ' I B_UDF_Itrim MODULE_NAME 'ib_udf"

The above declarationisfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

nod

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal MOD()
Description: Returns the remainder of an integer division.
Result type: DOUBLE PRECISION
Syntax:
nod (a, b)
Declaration:

DECLARE EXTERNAL FUNCTI ON nod
I NTEGER, | NTEGER

173

External functions (UDFs)

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_nod' MODULE_NAME 'ib_udf"

*nul |if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 1.5 —use theinternal function NULLIF()

Description: Thefour *nul I i f functions—for integers, bigints, doubles and strings, respectively —each return
thefirst argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (intl, int2)
i 64nullif (bigintl, bigint2)
dnul I'i f (doubl el, doubl e2)
snul lif (stringl, string2)

Asfrom Firebird 1.5 these functions are all deprecated. Use the new internal function NULLIF instead.

Warnings

« Thesefunctionsreturn NULL when the second argument isNULL, eveniif thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nul lif anddnul I'i f will returnwrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of theintended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nul |if
NUMVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnul |i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DCUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT " dNul [1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snul |i f

174

External functions (UDFs)

VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_POI NT 'sNul | | f' MODULE_NAME ' f budf'

*nvi

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 1.5 — use COALESCE()

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL re-
placers. They each return the first argument's value if it is not NULL. If the first argument is NULL, the value
of the second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)
snvl (stringl, string2)

Asfrom Firebird 1.5 these functions are all deprecated. Use the new internal function COALESCE instead.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT "idNvl*® MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,

175

External functions (UDFs)

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT ' sNvl' MODULE_NAME ' f budf'

pi
Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal PI()
Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION
Syntax:
pi- ()
Declaration:

DECLARE EXTERNAL FUNCTI ON pi
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_pi' MODULE_NAME 'ib_udf"

r and

Library: ib_udf
Changedin: 2.0
Deprecated in: 2.1 - use internal RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current timein seconds. Multipler and() callswithin the same second would there-
fore return the same value. If you want that old behaviour in Firebird 2 and up, use the new functionsr and() .

Result type: DOUBLE PRECISION
Syntax:

rand ()
Declaration:

DECLARE EXTERNAL FUNCTI ON rand
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_rand’ MODULE_NAME 'ib_udf’

176

External functions (UDFs)

right

Seesright.

round, i 64r ound

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Deprecated in: 2.1 — use internal ROUND()

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (nunber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isroundedto 4, but - 3. 5 isroundedto - 3. Theinternal function ROUND, available
since Firebird 2.1, rounds al halves away from zero.

Bug alert
Inversions 2.1, 2.1.1 and 2.1.2, these functions are broken for negative numbers:

« Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
¢ Anything between -0.6 and -1 isrounded to +1 (plus 1).

e Anything between -1 and -1.6 is rounded to -1.

e Anything between -1.6 and -2 is rounded to -2.

» Etcetera

Fixed for 2.1.3

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round

177

External functions (UDFs)

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR

RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf'’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

r pad
Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Deprecated in: 2.1 —useinternal RPAD()
Description: Returns the input string right-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)
Syntax:
rpad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON r pad
CSTRI NG 255) NULL, | NTEGER, CSTRI NG(1) NULL
RETURNS CSTRI NG 255) FREE |IT

ENTRY_POI NT ' | B_UDF_rpad'" MODULE_NAME 'ib_udf'

The above declaration is from the filei b_udf 2. sql . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a

178

External functions (UDFs)

NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULLs are passed to the function as empty strings and the result isa string with endl engh padchars
(if str isNULL) or acopy of st r itself (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt hislessthan st r'slength, st r istruncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it wereO.

* If padchar isempty, orif padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Deprecated in: 2.0 —use TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(N)
Syntax (unchanged):
rtrim(str)
Declaration:
DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE IT
ENTRY_POI NT ' I B_UDF rtrim MODULE_NAME 'ib_udf"

The above declaration isfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,

179

External functions (UDFs)

the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:

sdow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOW MODULE_NAME ' f budf'

See also: dow

Si gn
Library: ib_udf
Addedin: IB

Deprecated in: 2.1 - use internal SIGN()

180

External functions (UDFs)

Description: Returns the sign of the argument: -1, O or 1.
Result type: INTEGER
Syntax:
sign (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON sign
DOUBLE PRECI SI ON

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_si gn' MODULE_NAME ' i b_udf’

sin

Library: ib_udf
Added in: IB
Deprecated in: 2.1 - useinternal SIN()
Description: Returns an angle's sine. The argument should be given in radians.
Result type: DOUBLE PRECISION
Syntax:

sin (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON sin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_sin' MODULE_NAME 'ib_udf"

Si nh
Library: ib_udf
Added in: IB
Deprecated in: 2.1 - use internal SINH()
Description: Returns the hyperbolic sine of the argument.

Result type: DOUBLE PRECISION

181

External functions (UDFs)

Syntax:
si nh (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON si nh
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_si nh'’ MODULE_NAME ' i b_udf’

sgrt

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - use internal SQRT()
Description: Returns the sguare root of the argument.
Result type: DOUBLE PRECISION
Syntax:

sqrt (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON sqgrt

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_sqrt' MODULE_NAME 'ib_udf’

sr and

Library: ib_udf
Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe samesecondwill returnthe samevalue. Thisisexactly howr and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION

Syntax:

srand ()

182

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON srand

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' I B_UDF_srand' MODULE_NAME 'ib_udf'

sri ght

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 2.1 - use internal RIGHT()

Description: Returnsthe rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:
sright (str, nunthars)
Declaration:
DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE_NAME ' fbudf'

string2bl ob

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2blob (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT 'string2bl ob' MODULE _NAME ' f budf'

183

External functions (UDFs)

strl en

Library: ib_udf
Added in: IB
Deprecated in: 2.0 —use BIT_LENGTH(), CHAR[ACTER]_LENGTH and/or OCTET_LENGTH()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON strlen

CSTRI N§ 32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_strlen' MODULE_NAME 'ib_udf’

substr

Library: ib_udf
Changedin: 1.0,1.5.2, 2.0

Description: Returns a string's substring from st ar t pos to endpos, inclusively. Positions are 1-based. If
endpos ispast theend of thestring, subst r returnsall the charactersfromst ar t pos to the end of the string.
This function only works correctly with single-byte characters.

Result type: VARCHAR(N)
Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG 255) FREE IT
ENTRY_PO NT ' 1 B_UDF_substr' MODULE_NAME 'ib_udf"

The above declarationisfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,

184

External functions (UDFs)

the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* IninterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are dightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Addedin: 1.0

Changedin: 1.5.2, 2.0

Deprecated in: 1.0 — use SUBSTRING()

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h issmaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)

Syntax:

substrlen (str, startpos, |ength)
Declaration:

DECLARE EXTERNAL FUNCTI ON substrlen
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG(255) FREE_IT
ENTRY_PO NT ' 1B _UDF_substrlen' MODULE NAME 'ib_udf'

The above declarationisfrom thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. Thisleadsto a NULL result,

185

External functions (UDFs)

which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering subst r 1 en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf
Addedin: IB
Deprecated in: 2.1 - use internal TAN()
Description: Returns an angle's tangent. The argument should be given in radians.
Result type: DOUBLE PRECISION
Syntax:

tan (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON tan

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_tan' MODULE_NAME 'ib_udf"

t anh

Library: ib_udf

Added in: IB

186

External functions (UDFs)

Deprecated in: 2.1 - use internal TANH()
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

tanh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON t anh

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_t anh' MODULE_NAME 'ib_udf'

truncate,i 64truncat e

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Deprecated in: 2.1 —useinternal TRUNC()

Description: These functionsreturn thewhole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)
Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that islower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3. Theinternal
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Bug alert

Contrary to what's mentioned above, in versions 2.1, 2.1.1 and 2.1.2 anything between -1 and 0 is truncated to
0. This anomaly has been corrected in Firebird 2.1.3 and above.

Declarations:

In Firebird 1.0.x, the entry point for both functionsist r uncat e:

187

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' fbudf'

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncat e
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'fbtruncate' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound
and *t r uncat e declarations and declare them anew, using the updated entry point names. From
Firebird 2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

188

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with tranglit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
aretill stored “asis’ but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set isNONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atrandliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype fieldin the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set 1SO8859_1 as an exampletarget. Noticethe_” prefix in the introducer syntax.

Introducer syntax:
_1'SC8859_1 nystring

Casting:
CAST (nystring AS VARCHAR(n) CHARACTER SET | SC8859_1)

189

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row setis:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the variouslevels of transaction isolation is essential. WITH
LOCK isavailablein DSQL and PSQL, and only for top-level, single-table SELECTSs. As stated in the reference
part of this guide, WITH LOCK is not available:

* inasubquery specification;

o for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

* with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[W TH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardiess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

190

Notes

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored

isc_tpb_concurrency If arecord is modified by any transaction that was committed since the trans-

. _ action attempting to get explicit lock started, or an active transaction has per-
+isc_tpb_nowait formed a modification of this record, an update conflict exception israised im-
mediately

isc_tpb_concurrency | If therecord is modified by any transaction that has committed since the transac-
_ _ tion attempting to get explicit lock started, an update conflict exception is raised
+isc_tpb_wait immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This meansthat, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read committed | If there is an active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If there is an active transaction holding ownership on this record (viaexplicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
+isc_tpb_wait plicit lock waits for the outcome of blocking transation and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

191

Notes

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <col um- nanes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- names>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to processthe currently-locked row before the next isfetched and locked, or to handle errorswithout
rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

Simple:
SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

192

Notes

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGS are programmed in
such a way that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL data types. Most strings used in databases are only dozens to hundreds of bytes long; it would be awaste
to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most
CSTRING functions—asfound inthefilei b_udf . sql — specifiy alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or cause it to return a string longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A special caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that al the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POI NT ' | B_UDF_| pad' MODULE NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf';

Now you cancal | pad() for al thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the

193

Notes

vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, still usethe old style of parameter
passing, inherited from InterBase.

As aconseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with aNULL
keyword after the argument(s) in question, e.g. like this:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it
entry point 'IB UDF Itrim nodule_nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consulti b_udf 2. sql inthe Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf . sql .

Thesearethei b_udf functions that have been updated to recognise NULL input and handle it properly:
e ascii_char

* | ower

e | padandr pad

e Itrimandrtrim

e substr andsubstrlen

Mosti b_udf functions remain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower , . tri mand subst r * in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database
If you are using an existing database with one or more of thefunctionslisted above under Firebird 2, and you want

to benefit from the improved NULL handling, run the script i b_udf _upgr ade. sql against your database. It
islocated in the Firebird m sc\ upgr ade\ i b_udf directory.

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sumsthem al up.

194

Notes

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
sze 1.0,1.0.2 103 15x 2.0.x

lcol | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3coals
1024 62 50 41 62 50 41 62 50 41 50 35 27
2048 65 65 65 126 | 101 84 126 | 101 84 101 72 56
4096 65 65 65 254 203 169 254 203 169 203 145 113
8192 65 65 65 510 408 340 257 257 257 408 291 227
16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 454

195

Appendix B:
Document History

Theexact file history isrecorded inthemanual modulein our CV Stree; see http://sourceforge.net/cvs/?group
id=9028

Revision History

0.9 10 Jul 2009 PV First publication, based on the Firebird 2.0 Language Reference Up-

date with almost all the changes for 2.1 added (roughly adding 50% to
the size).

196

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.1 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008-2009. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material (the “et a.”) are: J. Beesley, Helen Borrie, Arno
Brinkman, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry Y emanov.

Included portions are Copyright (C) 2001-2009 by their respective authors. All Rights Reserved.

197

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.1 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship
	Completeness
	Miscellaneous notes
	Deprecated is not (always) deprecated

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB compatibility with VARCHAR
	Various enhancements

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	Privileges: GRANT and REVOKE
	REVOKE ADMIN OPTION

	PROCEDURE
	CREATE PROCEDURE
	Domains instead of datatypes
	COLLATE in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	COLLATE in variable and parameter declarations
	Domains instead of datatypes
	Restriction on altering used procedures

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change
 count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base
 table can be made insertable

	RECREATE VIEW

	DML statements
	DELETE
	ORDER BY
	PLAN
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	Domains instead of datatypes

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
 subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named colums JOIN
	Natural JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	ROWS
	Table alias must be used if present
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	ORDER BY
	PLAN
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	COLLATE in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Aggregate functions
	LIST()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird
 versions

	B. Document History
	C. License notice

